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D. L. Sxovug (%)

The change of scale and translation pathology

in Yeh-Wiener space. (**)

1. - Iniroduction.

Let C[a,b] denote the Wiener space of functions of one variable, ie.
Ola, b] = {(-)|@(a) = ¢ and =x(s) is continuous on [a, b]}. Let R = {(s,.1)]
la<s<b, a<t<f} and let C,[R], called Yeh-Wiener space, denote the Wiener
space of functions of two variables over R, ie. C,[R]= {&(-, ) |x(a,t) =
= a(s, ) = 0, x(s, t) continuous for a<s<b, a<t<f}. Yeh-Wiener measure
on the unit square was defined by Yeh [8]; (see also the reference to Kita-
gawa in [8];) and was extended by Kuelbs [5], to regions other than squares
and to higher (even infinite) dimensional spaces.

In seetion 2 we exhibit a subset of measure one in Yeh-Wiener space C,[R]
which for all real A& 4 1 is transformed into a set of measure zero by the
change of scale transformation y(-, -) = Az(-, +). In particular Yeh-Wiener
measurability is not invariant under change of secale. These are generaliza-
tions of results obtained by Cameron and Martin [3] for Wiener space O[0, 11.

In [2] Cameron showed that almost no translations in Wiener space pre-
serve measurability. In section 3 we obtain this result for translations in C.[R].

In section 5 we show that the results of sections 2 and 3 also hold in
N-dimensional Yeh-Wiener space.

We will include for the sake of eonipleteness a brief discussion of Yeh-
Wiener measure on C,[R]. For a more complete discussion see [8];, [5], and
either of two recent papers by Cameron and Storvick [4]; ,.

(*) Indirizzo: Department of Mathematics and Statistics, University of Nebraska,
Lincoln, Nebraska 68508, U.S.A..
(**) Ricevuto: 12-VI-1975.
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Let e =s,<8;,<..<8,=0b and a=1t<t<<..<f,=p be partitions of
[a,b] and [«, B] respectively. Let — co<P,, <@, <+ oo be given for
j=1,..,mand k=1,...,n. Then

I={xe C,[R]|P,, <a(s;, t.)<Q, for i=1,...,m and k=1, ..., n}

is called an interval in C,[R]. The measure of the interval I is given by
"L(I) = _n—mn/iz[(sl_ 80) cee (snz - 'S'm-—l)]—"/:2 [(tl - to) aee (tn_ tn_l)]“"’"l2 .
Qm,n Q{,l
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i=1

=1 (8;—85—1)(fp—tp—)

Pyn Py

This measure is countably additive on the set of all such intervals in C,[R]
and can be extended in the usual way to the c-algebra of sets generated by
the intervals (sets in this o-algebra are said to be strictly Yeh-Wiener meas-
urable) and then can be further extended so as to be a complete measure
which we will also denote by m. Integration of a functional F with respect
to this measure will be denoted by [ F(z)da.

03[Rl
2. - Change of scale pathology.

In this section we consider the change of scale transformation
1 yloy o) = Aw(-, -)

for 1 real and # in C,[R]. We will show that there exists a subset 4, of C,[R]
such that n(4,) = 1 and which, forall real A¢ 4+ 1 is mapped by (1) into a
null subset of C,[R]. In particular we will show that Yeh-Wiener measura-
bility is not preserved by change of scale.

The following lemma, whose proof is given in section 4, plays a key role
in the development.

Lemma 1. For n=1,2,3,.. let ¢, be the set of poinis

Op = {(8(5")7 tf:ﬂ)) = (a, +J(b— a)[27, o + B(f — 0‘)/2") lj, k=10,1, ey 21;} .
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For each © in C,[R] let

@) Sof@) =13 3™, ™) — a(si,, 1) — a(s{?, 1) + a(s2,, €2)1% .
Feu1 k=1

Then

(3) lim 8 (@) = (b — a)(f — «)[2 for almost all © in C,[R].

n—>rw

Notation. TFor EC G[R] and — co< A< co let AE = {Ja(-, -) |z € H}.
Tor A>0 let A,={ze C[R]|lim S, (z) = A*(b— a)(f— «)/2}, and finally let

D = {we C,[R]|lim 8o (x) doesn’t exist}.

The following theorem is an easy consequence of Lemma 1.

Theorem 1.

a) m(d) =1 if and only if 1 =1,

by vdi= 4w for v>0 and >0,

e) m(Ar4y) =1 for 2> 0,

d) m(v14;) =0 for v= 4, v>0 and A=0,
e) AinA,=0 for A=,

f) m(D) =0,

g) m( U vr4;) =0 for each fized 2>0,
0 <v#Ed

h) C[R]= D+ 4;+ 4:+ Z As.

0<<A#L

Tu [4], Cameron and Storvick make the remark: « As in the case of Wiener
measure, strict Yeh-Wiener measurability is invariant under change of scale,
but there is no reason to suppose that this is true of Yeh-Wiener measura-
bility ». In fact Theorem 1 above shows that Yeh-Wiener measurability is
not invariant under change of scale. For let H be a non-measurable subset
of C,[R]. Then H N A, is also a non-measurable subset of C,[R]. Now for
0< 151, K= AYHNA4,) is a null subset of C,[E], hence measurable, while
AH = H N 4, is non-measurable.

Theorem 2. Let f(A) be a given function with domain (0, oo) and satis-
fying 0<f(A)<1. Then there is a subset Il of C,[R] which is measurable under
every change of scale (1) and satisfies m(AE) = f(2) for all A> 0.
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Proof. Tor each 4> 0 let B, be a subset of C[R] such that: m(k) =
=f(2). (I£ 0<f(A) <1 we can simply choose B = {w € Co[R]|— oo < (b, f) <y}

where y is chosen to satisfy f(1) = [n(b— a)(f — oc)]'-—*fyexp {— w/[(b— a)-

“(8— )]} dw.) Then B - > A4, A EB;) is a set with the desired property.

A>0
The following well known fact follows easily as a corollary to Lemma 1.

Corollary. The set of functions x in C,[R] which are of bounded varia-
tion on B have Yeh-Wiener measure zero.

Proof. Let Var[z, B] denote the total variation of z(s,t) on R. Then
for each positive integer s,

ot

271
Varis RI> 33 [alsf 1) — a(sieh, 6) — a(s, 40 + as, 40)
=1 =1

. S, () |
max |a(s5", 1) — w(s{), 1) — w(sP, (M) + w(sin), ()|
1<
1R

But for almost all # in O,[R], lim 8o, (@) = (b — a)(f— «)/2 so that Var[e, R]= oo

N>

for almost all z in C,[R].

3. - Tranmslation pathology.

For z in C,[R] let T, denote the translation T.2 =+ 2, which maps
C,[R] onto C,[R] and is 1—1. Translations in Yeh-Wiener space have been
studied by Yeh [8], ;, Kuelbs [5], and others. It is known that measurability
is preserved under translations by sufficiently smooth funections. This set of
smooth functions is however of measure zero in C,[R]. We will show that
this must be so for any translation theorem which preserves Yeh-Wiener
measurability.

A translation theorem for Yeh-Wiener space was established by Yeh (81,
and was later generalized by Kuelbs [5],. For completeness we will state
Kuelb’s theorem as it applies to O [R].
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Translation Theorem (Kuelbs). Let p be in IL,(R). Let z(s, i) =

3 i .
= [p(u,v)dvdu. Let F be a measurable functional on C;[RK]. Then

IIF(y) dy =exp[— Bf z)ﬂ]ﬂfmlf’(w 42 exp[—2 Rf p 4&] dw

gl

in the sense that if either integral exists, both exist and are equal. (If p(s, 1)
is not of bounded wvariation on R the integral [p d& is interpreted as a gene-
B
ralized Paley-Wiener-Zygmund integral [7], [5].)
In particular the translation theorems asserts that if z is of the above
form then the translation 7, takes each Yeh-Wiener measurable set ' into
a Yeh-Wiener measurable set 7,17 whose measure Is given by

m(T. )y =exp[— [ p2] [ exp[—2 [ pd&}da.
R Ir B

Theorem (Bearman). Let F(z,y) be an integrable funetional on Co[R] X
X 0,[R]. Then for all real 0,

[ P, y)dwdy= [ [ F(wcosf—ysing, zsinb -y cosf)dwdy .
02l 8] C2l 2] ¢l &) 0.(R]
Bearman [1] proved this result about rotations in Wiener space C[0, 1].
The extension to Yeh-Wiener space C,[R] is straight forward.
We will use the following modification of Bearman’s theorem in the proofs
of Theorems 3 and 4 below.

Lemma 2. Lot F[(p2-- ¢2)tx] be Yeh-Wiener integrable on C,[R], where
p and q are real numbers. Then Flpy + qz] is integrable on C,[R]X C,[E] and

| Flpy + ¢zldy dz = J; ]F[(p‘-’+ gl de .
¢l R

c:[ R} 0ol RY

Theorem 3. Almost no translations in Yeh-Wiener space preseive measu-
rability.

Proof. Let B be any Yeh-Wiener measurable subset of C,[E]. Then
using Lemma 2 we obtain

(4) fmT.B)de= [ [ yrz@)dzvde= I | gelz—2)dede

C:[ R] 02| 2] C1[R] ¢.[B] c:l Bl

= [ y:(2ty)dy = [ x27i 0 (y) dy = m(27} (E).
A¥] czlr]
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Hence letting F = 4,4 we see that m(Z,4,t )= 1for almost all ¢ in O,[R].
Hence almost all translations 7', take Az , a set of measure zero, into a set
of measure one. Again let H Dbe a non-measurable subset of O,[R]. Then
HN (T, A ) is also non-measurable for almost all z in C,[R]. But T7[H N
N(T, A% )]is a subset of 4,3 ,hence null, and so 7, is almost never measurability
preserving.

A subset I of C,[R] is said to be an invariant null set if for all 1> 0,
m(Al) = 0. Our next theorem shows that almost all translations restricted
to invariant null sets preserve measurability.

Theorem 4. If E is an tnvariant null set, then m(T.E) = 0 for almost
all z in Cy[R].

Proof. Let I be an invariant null set. Then m(2-*E) = 0. Hence by
4), fm(T.B)dz=m(2"*E) = 0. Thus m(7T.E)=0 for almost all z in C,[R).

Ca[R]

Remark. (i) The converse of Theorem 4 is not true since for 2> 0, 4, is

not an invariant null set while for As 2%, [ m(T,4,:) dz = m(2-t4,) = 0.
A
(ii) Proceeding as above one readily sees that the result in Wiener spaco

Cfla, b] corresponding to Theorem 4 is also true. That is to say, if F is an
invariant null set in Wiener space C[a, b] then the set 7, F has Wiener measure
zero for almost all z in (fa, b].

4. = Proof of Lemma 1.

We will first show that (8 (2)de = (b— a)(B— «)/2 for alln. So let n be
LA
a fixed positive integer and let

[(s9°— s — 1Tt s < s<s and W, <t

0, elsewhere

(p:i,k('g! t) = {

for j, k=1, 2, ..., 2%. Then {%,k}fk=1 is an orthonormal set of functions each
of bounded variation on R such that

b p
(65— MG — )Y [ [ (s, ) dats, 1) =

= (8§, ) — w(s{), 67) — (s, 1W,) - w(s), 1)) .
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Hence by the Paley-Wiener-Zygmund formula ([8]., theorem 11)

(B) [ Safx)d E 3 (s — s — 1) j J (s, 1) dz(s, 1)]* dow =
0,[ R} j=1 k=1 SR a =
= E 2 (s — sy (" — t)) [t | w® exp (— u?) du] = (b — a)(f —a)/2 .
§=1 k=1 —

In a completely analogous manner we obtain

© [ [t do = [0 - alf—l2F+5 3 5 65— s — 6

Now using equations (5) and (6) we easily obtain

(M) [ [Senl@) — (0 — a)(B — @)[2]* dw = (b— a)*(p — ) 2702

¢.{Rr1

Hence Sy, (#) converges in mean-square t0 (b—a)(f— «)/2. Now for
n=1,2 .. let

B, = {we C[R]|| 8o (@) — (b — a)(B— a)[2]|> (b— a)(B—o)2~0+2/3}

F,= UE, and F =) F,. Then for each fixed n

k=0 n=1
. [++] [--]
mFy<m(FY< > m(Ba)< 2 912tz as M —> oo .
k=0 k=0

Hence m(F) = 0. But for # not in F, lim S (¢) = (b— a)(f — «)/2 which

establishes (3) and completes the proof of Lemma 1.

Remark. Equations (3) and (6) could also have been obtained using
well known facts about Gaussian functionals [6].

5. =~ N-dimensional Yeh-Wiener space.

N
Let N be a positive integer. Let Y denote the product space (e, ],
k=1

where — co < @, < b,<<-+oo for all k. We will denote the points of Yy by
= (81, <., Sy). The N-dimensional Yeh-Wiener space Oy(Yy) is the set of
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all real-valued continuous functions #(s) on ¥ such that 2(8) = (81, ..., 8x) = 0
it s;=a; for some 1<j<N. See[5], for a discussion of the measure of this
space.

It turns out that all the lesults of sections 2 and 3 above also hold in Yeh-
Wiener space COy(Yy). The main fact that needs to be established is an
N-dimensional version of Lemma 1. For then the results about « change of
seale » in Cy(Yy) follow readily while using the N-dimensional version of the
Translation Theorem and the N-dimensional version of Lemma 2 it is easy
t0 see that almost no translations in Cy(Yy) preserve measurability.

Lemma 3. For n=1,2,... let o, be the set of points

= S5l -
On == {(81?7?1 1(;1)11\, ,JU s Iy = 0: 17 sty 2’"7

s,ff‘) O+ Julby— a)[2» for k=1,..., N} .
Llor each @ in Cy(Yy) let
8o, (@ 5 z (4,4,, ..., Aym(si‘:‘gl gl(;'iy)]z’
i=1 dy=1
where for k=1,2,..., N,

A, (S(") . 1(;1) )=

,71 iy
w(si"}l ey SP) — (s L s stm (n) sy,

Ly ) k—1igq? Sk =19 Skt gy 0 Swyag

N
Then lim Ss,(@) = 3 TT (bs— @) for almost all @ in Cy(Yy).

n—rw k=1

Proof (outline). Proceeding as in section 4 above, using the N-dimen-
sional Paley-Wiener-Zygmund formula we obtain

f S, (@) |

oy(2y)

3 ﬁ (bp— ay) »

k=1

1 N 2 N
f [Son @] do = [5 I (bk—ak)] 2700 T (b a,)? .
ON(YN) = -
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Hence

1 .Z 4
f [Sa"(w) BN i ! (b.’:_ a‘l:)]2 dy = 2~ l l (bk - ak)2 3
gN‘(yN) k=1 =1

from which the desired convergence follows as in the proof of Lemma 1.

Acknowledgement. The Author whishes to thank the University of
Nebraska Research Council for financial support.

Bibliography.

{11 J. E. BrArRMAN, Rotations in the product of two Wiener spaces, Proc. Amer.
Math. Soc. 3 (1952), 129-137.

[2] R. H. CaMERON, The translation pathology of Wiener space, Duke Math. J.
21 (1954), 623-628.

[3] R. H. CAMERON and W. T. MarTIN, The behavior of measure and measurability
wnder change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947),
130-137.

[4] R. H. CaMERON and D. A. STORVICK: [o]; Two related integrals over spaces of

continuous functions, Pacific J. Math. 55 (1974), 19-37; [«], 4 Wiener
integral equation, Indiana Univ. Math. J. 25 (1976), 235-258.

[5] J. E. KrzuLss: [o], Measures on C(¥) when ¥ is a compact metric space, Proc.
Amer. Math. Soc. 18 (1967), 248-254; [¢], A Cameron-Martin translation
theorem for a Gaussian measure on C(¥), Proc. Amer. Math. Soc. 19 (1968),

109-114.
6] P. Livy, Le mouvement Brownian plan, Amer. J. Math. 62 (1940), 487-550.
Al R. E. A. C. PaLeEY, N. WIENER and A. ZYGMUND, Notes on random functions,
Math. Z. 37 (1933), 647-668.
[8] J. Yenu: [o], Wiener measure in a space of functions of two variables, Trans.

Amer. Math. Soc. 95 (1960), 433-450; [+], Cameron-Martin translation
theorem in the Wiener space of functions of two variables, Trans. Amer. Math.
Soe. 107 (1963), 409-420; [+], Orthogonal developments of functionals and
related theorems in the Wiener space of functions of two voriables, Pacific J.
Math. 13 (1963), 1427-1436.

Summary.

In this paper we show that Yeh-Wiener measurability is not invariant under change
of scale. In addition we show thai almost no tramslations in Yeh-Wiener space preserve
measurability.






