ARUN BALA (*)

A note on a class of operators. (**)

1. - In the present Note we extend Luecke's class of operators [2] and obtain several results for the extended class of operators.

Let T be an operator (a bounded linear transformation on a complex Hilbert space H. Let $\sigma(T)$, con $\sigma(T)$, $\overline{W(T)}$ denote the spectrum, convex-hull of the spectrum and closure of the numerical range of T respectively. If X is a subset of the complex plane then ∂X denotes the boundary of X. In [2] Luecke has introduced a new class of operators as follows.

An operator $T \in R$ if and only if $\|(T-z)^{-1}\| = 1/d(z, W(T))$ for all $z \notin \overline{W(T)}$, where $d(z, W(T)) = \inf\{|z-\mu|: \mu \in W(T)\}$. We say an operator T is of class Y if and only if $\|(T-z)^{-1}\| \ge 1/d(z, \cos \sigma(T))$ for all $z \notin \cos \sigma(T)$. Firstly we prove that Y is an extension of R.

Let $T \in R$ then $\overline{W(T)} = \operatorname{con} \sigma(T)$. Thus $\|(T - z)^{-1}\| = 1/d(z, \operatorname{con} \sigma(T))$, and hence $T \in Y$. Since Y contains all quasi-nilpotent operators, it follows that R is properly contained in Y. Thus Y provides an extension of R. Following the same technique due to Luecke [2], it can be shown that $T \in Y$ if and only if $\partial \operatorname{con} \sigma(T) \subseteq \sigma(T)$ using this characterization of class Y, we show here by producing an example that the inverse of a non-singular operator in Y need not be in Y.

Example. Let T be a nonsingular operator such that $\sigma(T) = CU\{\frac{1}{2}\}$ where the notation C is used for the unit circle. Clearly ∂ con $\sigma(T) = C \subseteq \sigma(T)$. Therefore by the characterization given above, $T \in Y$. Now as $\sigma(T^{-1}) = CU(\bar{2})$, ∂ con $\sigma(T^{-1})$ is not contained in $\sigma(T^{-1})$ and so $T^{-1} \notin Y$.

^(*) Indirizzo: Faculty of Mathematics, University of Delhi, Delhi-110007, India.

^(**) Ricevuto: 28-XI-1974.

2. – Next, we give another characterization of the operators of class Y. Let $\widetilde{\sigma(T)}$ denotes the hen-spectrum of T, defined by Fujii [1]. Fujii has proved $\sigma(T) \subseteq \overline{\sigma(T)} \subseteq \operatorname{con} \sigma(T) \subseteq \overline{W(T)}$.

Further more we need the following idea due to Fujii [1]. T is an operator satisfying the condition (H_1) if

$$\big\|\,(T-z)^{-1}\big\|\leqslant 1/d\big(z,\,\widetilde{\sigma(T)}\big)\quad\text{for any}\quad z\notin\widetilde{\sigma(T)}\;.$$

In the following theorem we characterize the operators belonging to Y as follows.

Theorem 1. $T \in Y$ if and only if $\operatorname{con} \sigma(T) = \widetilde{\sigma(T)}$.

Proof. Let $T \in Y$ then $\partial \operatorname{con} \sigma(T) \subseteq \sigma(T)$ so that $\sigma(T)$ contains the convex curve $\partial \operatorname{con} \sigma(T)$. Therefore $\operatorname{con} \sigma(T) \subseteq \widetilde{\sigma(T)} \subseteq \operatorname{con} \sigma(T)$ and hence $\operatorname{con} \sigma(T) = \widetilde{\sigma(T)}$.

Conversely, let $\operatorname{con} \sigma(T) = \widetilde{\sigma(T)}$. Then $\partial \operatorname{con} \sigma(T) = \partial \widetilde{\sigma(T)} \subseteq \sigma(T)$ so that $\partial \operatorname{con} \sigma(T) \subseteq \sigma(T)$. Hence $T \in Y$.

Next we prove the following

Theorem 2. If A is an operator and B is a normal operator with $\overline{W(A)} \subset \sigma(B)$ and $\overline{\sigma(B)} \neq \operatorname{con} \sigma(B)$. Then $T = A \oplus B \notin Y$ but T satisfies the condition (H_1) .

Proof. Since by hypothesis, $\overline{W(A)} \subset \sigma(B)$. Therefore T satisfies the condition (H_1) by [1]. As $T = A \oplus B$, it follows that $\sigma(T) = \sigma(A) \cup \sigma(B) = \sigma(B)$. Also $\overline{\sigma(T)} = \overline{\sigma(A)} \cup \overline{\sigma(B)} = \overline{\sigma(B)} \neq \text{con } \sigma(B) = \text{con } \sigma(T)$. Therefore $T \notin Y$ by Theorem 1.

We now give another method to construct non-trivial examples of operators in Y.

Theorem 3. If A is an operator on H, then $A \oplus N \in Y$ on $H \oplus K$ whenever N is a normal operator on K with $\sigma(A) = \text{con } \sigma(N)$.

Proof. Let $T = A \oplus N$. Then $\sigma(T) = \sigma(A) \cup \sigma(N)$. Therefore con $\sigma(T) = \cos \sigma(N)$. Let $z \notin \sigma(A)$. Then

$$\|(A-z)^{-1}\| \geqslant 1/d\big(z,\,\sigma(A)\big) = 1/d\big(z,\,\operatorname{con}\,\sigma(N)\big) = 1/d\big(z,\,\operatorname{con}\,\sigma(T)\big) \ .$$

Also

$$||(N-z)^{-1}|| = 1/d(z, \sigma(N)) = 1/d(z, \cos \sigma(N)) = 1/d(z, \cos T)$$
.

Therefore

$$\|(T-z)^{-1}\| = \max\{\|(A-z)^{-1}\|, \|(N-z)^{-1}\| > \}1/d(z, \cos \sigma(T)).$$

Thus $T \in Y$.

We say that an operator T belongs to class Y locally if $\|(T-z)^{-1}\| \ge 1/d(z, \cos \sigma(T))$ for all $z \in U - \cos \sigma(T)$, where U is an open set containing $\cos \sigma(T)$. In the following theorem we prove

Theorem 4. If $T \in Y$ locally, then $T \in Y$.

Proof. Let $z_0 \in \partial$ con $\sigma(T)$. Then there exists a sequence $z_n \in U$ — con $\sigma(T)$ such that $z_n \to z_0$ and $|z_n - z_0| = d(z_n, \cos \sigma(T))$.

Therefore $\|(T-z_n)^{-1}\| \ge 1/d(z_n, \text{ con } \sigma(T)) = 1/|z_n-z_0| \to \infty$ which shows $z_0 \in \sigma(T)$. Hence $T \in Y$.

Lastly, we remark that Y contains nilpotent operators and it excludes all operators with countable spectra having more than one point, it follows Y is independent of the class of convexoid operators. In other words we get that the class (H_1) due to Fujii and class Y are independent of each other.

The author wishes to thank Prof. U. N. Singh for his kind help and guidance.

References.

- [1] M. Fujii, On some examples of non-normal operators, Proc. Japan Acad. 49 (1973), 118-123.
- [2] G. R. LUECKE, A class of operators, Pacific J. Math. 41 (1972), 153-156.

* * *

