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D. BALLEW (%)

Cyclic ideals in order. (**)

Introduction.

Tiet 4 be a Dedekind domain, K its quotient field and 2 a finite dimen-
sional central K—algebm. An A-order is a subring Q of X containing 4 such
that K @40 ==

Assume that I’ and A c I are two A-orders in 2. It is well known that
if p is a unit in X, then Ap is A-projective. The primary purpose of this paper
is to investigate the /-projectivity of modules of the form n = @A,u, where

i=1
the u, ave in A but not necessarily units in X. We shall be particularly interested

T
in condition involving the knowledge that @ I'u; is I-projective. Finally we

=1
will consider hereditary orders and matrix rings.

1. - Cyclic ideals and idempotents.

Assume X is a ving with unity and for p in A, define (0:u)a= {zed: au = 0}.

(*) Indirizzo: Department of Mathemabics, South Dakota, School of Mines and
Technology, Rapid City, South Dakota 57701, U.s. A
(¥*) Ricevuto: 8-I1-1972.



2 D. BALLEW [2]

Lemma 1.1. PFor {u}l_, a subset of A, let M = 6’;/1/,&;. The following
conditions are equivalent. i
a) M is A-projective.
b) For all 4, (0:u;)a contains an idempotent.
¢) For all 4, (0:u)a is A-projective.

d) For all i, (0, u)a is a direct summand of A.

Proof. Define the map p: A->Ap by right multiplication and con-
sider the exact sequence

(1) 0= (0:u)a~ A% Apu—0,

where ¢ denotes the natural injection. Hence Au is A-projective if and only
if it is A-isomorphic to a direct summand of A and (0:u)4 is the other direct
summand. Since 4 has an identity, we have that (0:u)4 is a direct summand
of A if and only if it is generated by an idempotent.

The equivalence of a), b), ¢) and d) now follows from the fact that
M = @ Ay, is A-projective if and only if each summand is A-projective (41,

i=1

p. 382).

Theorem 1.2. Let A be a ring and M a left A-module of the form
M= @ Ap:. Then M is a projective A-module if and only if there is a left A-mo-

i=3 r
dule of the form J = @ Al; such that the 1, are idempotents in A and Ap; is A-
i=1

isomorphic to Al, by the map L, —1liu, i=1,..,r

Proof. For cach ¢ (¢ =1,...,7) there is an exact sequence
(2) 0_'> (O:ﬂz)A%A —>AILL,'——>O .

Since finite direet sum is an exact functor, » sequences in (2) give rise to the
exact sequence

0——>@(OZIL,-)A—>A(')—~>®A”,~=M—>0.

i=1 i=1
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By Lemma 1.1, M is A-projective if and only if (0:u,)a is generated by an
idempotent f; in A (i =1,...,7). Let l,=1—f,. Then Al A/Af; and Ap, =~
= AJAf;: Set J = @ Al,.
i=1

Conversely, if such a A-module J exists with Al;~= du; (¢ =1, ...,7), then

since Al; is A-projective, the Au;, and hence M = @ Ap;, are A-projective.
i=1
To see that Ay, is A-isomorphic to Al;, note that A= Al;® Af,.
Then
Ap; = Alip: ® Afi,ui =Alp; .

Hence, Al;—> Al;pu; is an isomorphism.

Lemma 1.3. Let A be a ring with unity and M a left A-module of the form

M=@ Au;. Set pu=p,+ ... +pu,. The following statements are equivalent.

i=1

(a) M= Ap.

(b) For every i, there is an x; in A which is in every (0:.u;)a for j i and
is not in (0:p)a and such that xu;= u,.

(e)y Aun Ap;= Au; for each 1.

Proof:

(a) implies (b). Tf M = Ay, then p, is an element of Ay, for all ¢, and
there is an element @, in A such that p,= 2+ ... -+ g+ oo + pr)-

Hence y;=x;p;+ ... +2ipbs+ .. + Tifhy and x;u;= W, since the sum is
direct. Thus z; is in (0:x;)a for j=£14, and z; is not in (0:u)a.

(b) implies (¢). If such z, exist, then g, is in Ayu for all i. Hence Ay,
is contained in Ay and Au, N Au = Au;.

(c) implies (a). Aw O Ap;= Ap, implies that u; is in Ay and so M ¢ Ap.
The inclusion N2 Ay is obvious.

2. - Change of rings.

Let I'2/4 be two A-orders in the central K-algebra 2’ and again assume

M= @ Au;. The set {u;} is a generating set for M over A. We let I'M be

i=1
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m

the Imodule consisting of elements of the form 3 y;x; With @; in A; then
i=1
1t is clear that {/1,} is also a generating set for I'M and I'M = @ I'p;. Further,

i=1
it is clear that the set {u;} can be a minimal generating set for M over / and

not be a minimal generating set for I'M over I

This section will be concerned with conditions that insure M is A-projective
when it is known that I'M is [-projective. It is known that I'M i is I“projective
if I" is maximal ([5], p. 5).

By Theorem 1.2, M = @A,ui is A-projective if and only if M is A-iso-
i=1 r
morphic to a left A-module J = @ Al; with I, an idempotent in A for all 4.

t=1
Call the set {l;, L, ...,1,} the set of idempotenis associated with D.
We will now consider a relationship between the idempotent associated
with M and the idempotents associated with I'M when M is A-projective.
We note first that if M is A-projective, then I'M is I-projective. To see
this, it is sufficient to consider the case where M is free, and for this it is suf-
ficient to consider the case where M =/. But then I'M = I, which is

Iprojective.

Theorem 2.1. Let I'2A be two orders and let M= @ Au, be a left
i=1

A-module.
If M is A-projective,

(a) There is a set of idempotents in A, {f:} such that (0:p)a= Af; and
(0 .ﬂl)rzrfl.

(b) For l,=1—f,, Al,2 Au; as A-modules and I'l,~Tu; as I-modules.

Conversely, if I'M is I-projective, then letiing y; be the idempotents such that
(0 )F Iy;, we have that M is A-projective if and only if there is a set {y.},
i=1,..,0, n I such that y.y,; is idempotent in A with Ay y,= (0:u)a.

Proof. If Au is A-projective, then by Lemma 1.1, (0:pe)a 1s genémted
by an idempotent f of A. Set I=1—f Clearly (0:u)a= (0:0)4s Now let y
be in (0:u)I; then y =yl 4 yf in I's=I'l@ I'j. By ([3], sect. 4), there is an
a0 in 4 such that al'c A. Then ay is in (0:p)a= (0:0)4, so ayl = 0 Since
I is A-torsion free, yl =0, s0 ¥ =9f and (0:u) = [T

Part (a) follows with the above ideas applied to each 1.

By Theorem 1.2, AZ,MA,uZ and the isomorphism extends to ]’lz___Z"u,
Hence (b) is true.
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If M is A-projective, let {i;, L, ..., L} be the idempotents associated with M
and define f;= 1— I,. By the first paragraph of this proof, (0: u)'=1Tf; and
If; =Ty, Let {y,-} be the set of elements such that f,=y.y:. Conversely
if such a set of y, exists, then by Lemma 1.1, M is A-projective.

We will now approach the problem from a slightly different viewpoint.
We assume that I'M is I-projective and we let {I, ..., I, be the set of idem-
potents associated with I'M. Set fi=1—1,. We consider the set {A1}.
Since 1, is not necessarily in A, Al; may not be A-projective; however we can
prove the following.

Theorem 2.2. Let I'2 A be two A-orders in X and let M= @ Ap; bea
i=1
left A-module. Assume I'M is I-projective, and let {ls, ..., I} be the set of idem-
potents associated with I'M. Then the following statements are equivalent.

(a) M 1is A-projective.
(b) For i=1,...,7, there is an idempotent @; in A such Al Aw;.

(c) Al; is A-projective, =1, ..., 7.

Proof. Set fi=1—1;, i=1,...,7.
(a) implies (b). Let M be A-projective, and let {®, ..., @} be the set
of idempotents associated with M. Set y;=1— ;. By Theorem 2.1 Iy, = I'f;
since (0 u)a=Ay;. Thus I'=1Il® I'f, implies Iw,o 'y, @ I'f sy = T'lias;
hence I, is I-isomorphic to I'w, by the map 0,:1,—~ ;.
Restricting 0; to Al, gives the desired isomorphism.

(b) implies (c). This is clear since »; is an idempotent in A and Aw; is
A-projective.
(¢) implies (a). Since I'M = @ Iy, (0:p)a= (0:p); s0
i=1

(0:p)a=AN(0:p)p=AN(0:1)p=(0:L)a.

Thus for each i, there is a commutative diagram

: ’ ) 1),
0—>(0:1)a> A— Al; —~0,
¥ o ¥ B8 ‘l’ﬂi
i (B2)e

0—(0:u)a> A— Ap;—~0,

where j is the injection map, (1), and (u.). denote right multiplication by I;
and u, respectively, «; and f are the identity maps, and %, will now be defined.
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Sinee Al; is A-projective, there is a A-homomorphism %,: Al, — A such that
()= 1. Define n,= (u,),fh;. From the hypothesis of (¢) it is easy to show
that 7, is an isomorphism. Hence Ay, and M are A-projective.

The next result will be very helpful in checking when AI, is A-projective.

Theorem 2.3. Let I'2 A be two A-orders in X and let | be an idempotent
in I. The following conditions are equivalent.

(a) Al is A-projective.

(b) There is a y in I' such that y(1—1) = yf is idempotent in A with
(0:0a=Ayf for 1—1=1.

(¢) Al is A-isomorphic to Az for x an idempotent in A.

Proof. (a)is equivalent to (b). By ([3], sec. 4), there is an element a
in A such that alis in A. Now I'lis I“isomorphic to I'al, so I'al is I“projective.
Hence taking al as p; and 1 as I, in Theorem 2.2, we have that Al is A-projective
it and only if Aal is A-projective. By Theorem 2.1, Aal is A-projective if and
only if there is a y in I' such that (1 — 1) is an idempotent in A and (0:al)=
= (004 =Ady(1—1) = Ayf for 1—1=7+.

(a) is equivalent to (e). Certainly, if Al is A-isomorphic to Ax for z an
idempotent in /A, then Al is A-projective. Conversely, if Al is A-projective,
consider the exact sequence 0-—> (0:1)4-+ A-EL/IZ—>0, where gh = 1. Then
A = MAl) ® (0:1)4, s0 (0: 1)4 is generated by an idempotent y. Let a=1—y.
Then A=Az @ Ay = Az @ (0:1)4 so Al is A-isomorphic to Ax.

3. - Applications to hereditary orders.

An order is said to be left hereditary if it is left hereditary as a ring; i.e.,
every left ideal is left projective over the ring.

It is known that if an order 4 Dedekind domain is left (resp. right)here-
ditary, then it is right (resp. left) hereditary, (21, p. 8). Thus we may speak
of an hereditary order without any confusion.

Theorem 3.1. Let A be an hereditary A-order in 5. Then if « is an idem-
potent in any order I' containing A, there is an idempotent § in A such that
Lo =TI

Proof. Let « be an idempotent in some order I'c A. By ([3]; sect. 4),
there is a k in A such that kI"' c A. Then kx and k(1 — «) are in A. Consider
the sequence :
0—(0:k(1—a))a—A—>Ak(1—a)—0
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which is split exact since A is hereditary. Since A is A-torsion free,
(0:%(1— a))a= (0:(1— o))4 and is generated by an idempotent f. By Theo-
rem 2.1, (0:(1— a))=I'B; but (0:1— a))p=1Tu, so Ia=1Tp.

Proposition 3.2. Let X, be the n Xn matrices over K. Let A be an A-
order in X, such that I' contains the matriz units 1, 1<i<n. Assume that there
is a set {y} in I' such that y;l;; = f; is an idempotent in A with I'l;;= I'f;.
Then A contains a set of matriz units g such that A= Ag, @ ... ® Agna-

Proof. We first note that

and

A=ANT=ANT1u® ... L) =AN T ®... ®IH.) .

If zisin ANUB® ... ® [B.), then =y, + ... + ¥y, is in A with y;in IP,.
Clearly 28, is in A, and xf,=1y,. Further, y,= 1,8, with 4; in I', so ¥y, is
in ANTB,. Thus z is in (ANTH)D ... (AN IH,).

On the other hand, if # is in (ANIH)®... ® (ANITP,), then z =y, +
+ oo + Y, y:in A and y; = A,8:for A,in I. Hencezisin AN (I, ® ... @ IP.).
Therefore

A=ANTBY® ... ® (ANTB) =Ap @ ... ® AP, .

We note that 2, = @ X, liu= @ KR, [l;= @K@AAﬁi:

n
i=1 i=1 i=1 i=

2B
1

We claim that the 8, are a set of matrix units in X, and will serve for a set
of matrix units in 4.

Since X, is simple and has X,8; as minimal left ideals for all 4, the
X B are all isomorphic as Z,-modules ([7], p. 45). So there are 2,-isomorphisms
frit Znfi—> 2upfse

Further we define Z,-isomorphisms f;; = fi;f;, where f,;=7f;'. Then set
g =fu;Bs. We have §iifmn = GisfunPum=funfim Which is zero unless j=m
since g;; is in X, 8; and ;5. = 0 for j = m. Also if j = m, Gun"Gon = Fanl@imfm) =
= funGim = funfmB:= finfmsfinfa i = FinfuBi = finBi = Gin- Thus, the {gii}
(t=1,..,m; j=1,..,n) are a set of matrix units in 2, and gu=1Ffuf:=
= fiifizﬂi - /3;'-

We say that an order A in X, has isolafed positions if every element

Sa;l; in 4, a; in A is such that a;l; is in 4 for all 4, 5.

i,i=1
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Theorem 3.3. Let A be a discrete valuation ring. Every hereditary A-order
A in X, has isolated positions.

Proof. The A-order 4, (»nXn matrices with positions in 4) is maximal
and every other maximal 4-order in 2%, is isomorphie to it by an inner auto-
morphism ([2], p. 11). It is clear that since 4, contains the I, each maximal
A-order does. Therefore applying Theorem 3.2, we have that 4 contains a set
of matrix units {gi,»}. Let I' be any maximal A-order containing /. Since 4
is a principal ideal domain, both I” and A are free A-modules ([5], p. 92). Let
7 be a prime element of 4 and let P have an A-basis {n*#l,}. Let {Ay}
be an A-basis for 4 and write it in terms of the A-basis for I, say

ij ),
Z.,;j = za/;a T re lpq .
?,q
Then

if I3
lmi Z»z‘i Z]’n = a'mn Jromn Zmn

is in 4; so A has isolated positions.

4. - Matrix orders.

We will now devote most of our attention to matrix orders and apply the
results of the preceding sections to them.

An ideal I of an order A is full in A # I K=A®, K. If I is a full
left ideal over A and has a generating set {u.}, 1 =1, ...,r, over A such that
Ap:ly 5= 0 if and only if Au,;l,. =0 for all j =41, then say that the u; group

columns.

Theorem 4.1. Let X, be the K-algebra of n xn matrices over K. Let A

be an A-order in X and let I be a full left ideal of I = @ Ap.; then the u; group

=1

columns, I is A-projective if and only if I is A-isomorphic to a A-module J of

the form J = @ Al; with the 1, idempotents and the Al; isomorphic to Ap; as
i=1

A-modules. Further, the u; can be corresponded to the 1, such that Ap,ly =0
if and only if Ap;ly.=0; l.e., u; and 1, group the same columns.

Proof. Let ¢ be an index such that pl,. %0 for some k. Then u; must
have a non-zero element in the k-th column, say in the (m, k) position. By
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([31, sect. 4) and the proof of Theorem 3.3, we see that for every pair (n, m)
there is an element o, such that m%ml,, is in A. Thus a%ml,,; has a non-
zero element in the (n, k) position for all n. If there is a j such that g, lu 0,
then in the same way we see that Au;l, has a non-zero element in every
(n, k) position. Henece since Au; M Au;= (0) when ¢54j, we must have 7 =j.

If Apsly.=0 for all js=14, then since I has dimension #2 over A4,
Apily 5= (0); for otherwise the dimension of the direct sum is not n™

The existence of the ideal J follows from Theorem 1.2.

Let 7, be the idempotent such that Af,= (0:u;)a and l;=1— f:;. As in
Theorem 1.2, the map I, —I,u; is an isomorphism from Al; to Ap,l,. Consider
A= Ap; ® Af; and let m be such that Apilym = (0). Then Ap;lum @ Afilpm ==
o Al,,, implies that Af L, == Alym. Now considering A o~ Al ® Af;, we have
Al = Alilom @ Af by Since  Af by o2 Al and dimy Al = dim, Af L+
+ dimy Al Ty, we have dimy Al L, = (0) and Al = (0). Thus Api L. = (0)
implies that Al 1., = (0).

On the other hand, let m be such that Appilm 5= (0). Then as before we
have Ap;lum @ Af ilym = Al a0d ALl @ Af il = Alp. Thus dimg Af Lum %
7 dimy Aly, so dimg ALl 0 and All,,70. Hence Al L. 7 (0) implies
Al L= (0).

Conversely, if such an ideal J exists, then as in Theorem 1.2, I is A-projective.

Henceforth 4 is a discrete valuation ring with = a prime element in A.
X is the n xn matrices in K. I'" will be the maximal order of the form

4 A A

4 4 A
I'=

4 4 A

The sub-order A of " will be taken of the form

A A g4 - - - AmA

wr A g2 d - - - glam A
A= : : : ’

amA  amd - - - a4

where since 1 is in A, 7;; = 0, for all 4, and r;;> 0 since A ¢ I'. The left ideal
I of A is of the form
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At 4 aetie 4 . . . grintea 4
mreit e 4 mhetiea 4 - o o gl 4
I o
a1t 4 qnet o2 4 gntoan 4

By the form of I if ;= min (», -+ s,;), then

a1 A AA - - - g4

a4 A4 - - - a4
Il = . )

A A=A 7 A

Thus [T is cyclic over I and generated by an element u whieh has 6,;7#% in
the (¢, j) position where ¢;; is the Kronecker delta, d,;=0 if i 544 and ;=1
if 7=7j.

We will now define a numerical invariant which will be used as a condition
in our later theorems.

Let M and N be torsion free A-modules such that M @, K is A-isomorphic
to N @4 K. Let T be an A-linear transformation of M onto N; then 7 has
2 unique extension 7%: M ®, K — N ®, K as K modules. Define the module
index [M:N] by [M:N]= (det (T%)).

Notice that changing the 4-basis of M or N alters 7 only by a unimodular
transformation, so that [M:N] is independent of the choice of basis.

We state without proof the following properties of the module index. These
follows directly from the definition or from [1].

Theorem 4.2. Let M,, M,, M, be such that M, QK = M, QK ~
o~ M, ®, K.
1) [M,:M,]=A4;
2) [ My M,1[ My M,] = [M,: M,];
3) If [M,:M,]=A and M,2 M,, then M,= B,;
4) If M2 M,, then [M,:M,]C A.

A. Frohlich used the module index to give criteria for projectivity of mo-
dules in orders of finite dimensional commutative separable K-algebras in [7].
Specifically he showed that if I" is the unique maximal A-order in X, 4 any
other A-order in X, M a A-module such that K ®, M =~ X", then M is
A-projective if and only if [I'M:M]= [I":A]". This criteria was extended to
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noncommutative algebras in [1], and [1],. The following will give further
extensions to matrix orders.
Now returning to the preceding notation, we have that

Z f
@) [ A1 =TT

Zorggte— ey

(3) (111 =TI"

directly from the definition.

Lemma 4.2. Given any j, 1<j<n, then s;;<s;; for every ¢ and v;; -+ si=

- min (Tik + Sik + Tkj).
k

Proof. The left ideal I must be closed under left multiplication, so
since
amn L. vt e I = qmat Spet g [, -

where I;; are the matrix units and d; is the Kronecker delta, we have
g+ Sme <TOIN (7 + 840+ 74) for all (m, ). Since 7= 0 for all 4, ¥ue+ Sme=

i
= Pm + Tma + Smq SO that

(4) Pima _l_ smq = min (’rmi + Siq + Tia)
i

for all (m,q). If in (4) we set ¢ =1, Tmg+ Sme<¥mqt Sau- Hence for every
(my @)y Smq<Suq-

Lemma 4.3. If for each j, 1<j<n, Il; is of the form Aa;l; with a;
in A, then Il;; is A-projective, I is A-projective and [I':A]=[I'T:I). Further
[A:I]= ((a1 ... @a)").

Proof. If Il;= Aa;l; with a;in A, then II; is clearly A-projective since
it is a direct summand of Aa;. We are identifying @ in 4 with the matrix in 2
having @ in every position on the main diagonal and zeros elsewhere.
If a;= w;n% for w; a unit in 4, we can multiply by ,u;“l and without loss of
generality consider a; of the form #*. Then I is cyclic with generator

n’x o - - = 0

o O

)
Of?
o O

o
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Then the map 1 — Au is a A-isomprhism of A to I which extends to a I-iso-
morphism of I" to I'I. Then by the definition of module index and usual pro-
perties of determinants we have [I":A] = [['I:I]. Again from the definitions,

[4:I1= ((ay ... @,)?). I is A-projective since I= @ Al;; and is thus a finite
direct sum of projectives. ’ =1
Set pi =17+ s;;— 8;; for all ¢ and j.

Theorem 4.4. If p,;>0 for all 4,3, then [I'I:I]=[I":A] smplies that I
i8 of the form I = @ Aa;l; with a; in A.
b}

Proof. By Lemma 4.2, s;<s;; for all ¢ and j, so we have 0<p,;<7;.
: P N

P T
By equation (2), [I":A] = IT¥ " We claim that [I1:11=11 ", Since P50
for all (i, j), then 7+ s;;>s;;. Then min (r; -+ 8i5) = 855, so by equation (3),
Z 9;; 3 Z 95 ot
we have [I'T:I]=1II% p“. By our hypothesis, IT¥ -, , 80 py=1, for
all (¢,7). Hence s;; = s;; and we take @; = ', .
‘We will now consider /A to be an herveditary order. By Theorem 3.3, every
hereditary order in 2, has isolated positions. In [8], J. Murtha proves the
following which we assume without proof. ‘

Theorem 4.5. Assume the preceding notation. An A-order A is here-
ditary if and only if

(a) =0, 1<ign,

(b) there is a k, 1<k<mn, such that r,; =0, 1<i<n;
() ry<ra for some fized k, 1<i<n;

(A) ro<ra 471y, 1<i,j, k<n;

(&) ro+ru<l, 1<ij<n;

(f) ru<d, 1<, j<n.
Lemma 4.6. For every pair (i,j), s;=8;; or $;==8;;— 1.
Proof. Since I 'is closed under left multiplication by elements of A, so
T i Sk = it s Lis
implies

(8) Tt Pt S >V Sir
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By Theorem 4.5 (f), equation (5) implies 2 -4 85> 8. Thus 2 4 85> 85> 84-
From (5) with &k =j, we use Theorem 4.5 (e) to obtain 1 + 8;;>8;;.
By Lemma 4.2 this means s;;= s, Or §;;= 8§;+ 1.

Lemma 4.7. If sy=s,;-1, then v5=1 or r;;=1 but not both.

Proof. Let s;;=s;-+ 1 for the pair (4,j). If r,;=1, we are done by
Theorem 4.5 (e). If ;=0 then from the closure of I under left multi-
plication

i 1, ait e Ly = LN P

we have 7+ 8§;>8; =85+ 1.
Thus r;; =1 by Theorem 4.5 (f).
Lemma 4.8. If pi;>0 for all pairs (i, j), then 7+ 84— min (v -+ 81;) <7
E
for all (i,§). If for any pair (i,3), sy=s8;—1. Then [['1: I1<[I:4].
Proof. Since p;>0 for all pairs (4, ]), 7+ 8:>8s for all (4,j), and so
min (r,; -+ $;) = 8;;. Thus p,;<r;. By equations 2) and 3), (I IN<[I:4].
k
If [I'I:I]=[I":A4], then by Theorem 4.4, I has the form I = @ Aa;l; with
i
a; in A. Thus s,;;=s;; for all (i, §) which is a contradiction. Thus 1)<
<[I":A].
Corollary 4.9. With the same hypothesis as in Theorem 4.3, if 85 =8;;
for all (i, ), then I= @ Aa;l; for a; in A.

For a fixed j, 1<j<n, let N,(i) denote the number of (i, j) positions such
that s,; = s,; if at least one (p, j) posit is such that s;; = s,; -+ 1. Set N;i(i)=0
otherwise. Let N(I) = Y N,(i).

s

Theorem 4.10. If there is an (i, j) position such that p.; << 0, then

(a) there is an (i, j) position such that r; =0 and s;-+1 = 8;;
(b) [IT:I}Z [I:A4];

(¢) IT:I1=[I":4]14 N(I);

(d) N(I)Z 0.

If [I'I:I]=[I":A), then I has the form I= @ Aa;l; for a; in A.
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Proof. If there is a pair (4,§) such that Pi; £ 0, then for that pair
T+ 85— 855 0, 50 that r,;+ ;5 s;. If s;=s;,, then r455 0 which is a
contradiction. Thus s; -+ 1 =s;; by Lemma 4.6. If r;= 1, then since 7;; -+
-+ 8558 we have 14,5 s,;+1 which is ridieulous. Thus 7, =0 and
S+ 1 =8y;.

Consider the j-th column and hold j fixed for the moment. If 7,8y, T Siis
then #y; -+ s, 5 s;;— 1. By Lemma 4.6, s, 1=s,; or $;;=s5;. In the first
case, we have r,;+ 8 T 8+ 1— 1, which implies 7 5 0. In the second case,
we have 7+ s; 58— 1 or 715 3 — 1. Thus both cases are impossible, and
we must have s;<ry;+ s,; for all pairs (%,j). Further, s;= min (r,;+ su;)
because 7; = 0. "

For any p, 1<p<n, consider 7,;4 s,;— min (4 8i;) = #,; -+ S, — S5+

k
By Lemma 4.6, s,;=s;; or s,;41=s,;. In the first case we have 7,
A+ Spi— 8y =Tp;+ 85— 85+ 1 =r,; -1 i rp;. In the second case, we get
Tpi—F Sps= Ss5=1p;+ 85—~ 1— 8;; -+ L =1,;.

Thus for those (p,j) positions such that s,; = s;;, we obtain a contribu-
tion of & to [I'I:I] which does not appear in [I":A]. Thus [I'T:I]=[I":A]+
-+ Na(I). '

II no position (p, k) oceurs such that s, -1 =s;,, then the index for
that column does not change since s;;=s;; for all 4.

Since by hypothesis, p,; $ 0 for some (4,j), Na(I)>1, so [[T:I]7 [I":A]

Thus finally, if [[T:11=[I":A4], then p;>0, so by Lemma 4.4, I is of
the form I = @ Aa;l;; for a; in A.

)

We colleet what we have proven into the following
Theorem 4.11. Let A be an hereditary A-order in X, and I a left ideal
such that A and I have isolated positions. Let I' be a mazimal order containing

Ain X, Then [I'1:I]=[I":A] if and only if I is A-projective and of the form
I= @ Ag;l; with a; in 4.

B
For our final result, we will no longer require that A be hereditary, but
we will assume the notation of this section.

Theorem 4.12. Assume I'I=1. Then I is A-projective.

Proof. We know that I'I has an A-basis of the form

min(ry; 4 8p;)
m
44 ISk, d=1 *
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Thus I'T is cyclic and generated by

mln(fh+skj)

H = \5u lisgs

where §,; is the Kronecker delta. Since I'T =1, u={6;}. So we have
mln (7I»J + SLJ) =1.

Slnce I has isolated positions I = E/ly, where

i=1

0+---0 auTud 0---0
0+ -0 auteud 0. - -0
0 - -0 it e 4 0 -+ -0

and Iu;= I'l;;. Thus since [;;isin A4, 1— l;isin A for all . Further (0:u,) =

"
— A(1—1;). Thus Ag; is A-projective and I = @ Ay, is A-projective since a

ie=1
finite direct sum of projectives is projective.
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Summary.

This paper considers A-orders in finite dimensional central algebras where 4 is a
Dedeliind domain. The theorems concern conditions on projectivity for direct sums of
cyclic modules. Change of rings theorems are proven which give conditions for an order
to be projective given that it is a sub-order of a projective order and wviceversa. These
resulls are applied to herveditary orders and especially matriz orders.

Finally, theorems are given with conditions on numerical invariants such as the
module index.
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