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Continuity conditions and convergence properties

in generalized metric spaces. (**)

Introduction.

In this paper we consider the class of Hs-spaces, which are generalized
metric spaces (see [3],) and we show that many properties of convergence of
sequences of the space correspond to appropriate conditions of continuity on
the distance. In particular we show that when the distance is uniformly con-
tinuous a completion theorem analogous to the one existing in ordinary metric
spaces holds.

The principal aim of the paper is to show that many properties of metric
spaces don’t essentially depend on the triangular axiom, but on properties
of continuity induced by such an axiom; thus one can think that in many
problems the triangular axiom can be replaced by the condition of uniform
continuity of the distance. This is particular interesting if one considers that
uniformly continuous distances arve characterized by the following condition:

d(z, 2) <§D(‘l(w7 y)) + d(y, 2) ,
where ¢ is a real function infinitesimal in zero (see [3]1).

1. — Let X be a set. In previous papers (see [2], [3];, [3]s, [4]) we defined
a distance on X to be a function d: XY XX — R () satisfying quite general

(*) Indirizzo: Istituto di Matematica, Universitd, 43100 Parma, Ttalia.

(**) Lavoro eseguito nell’ambito del G.N.S.A.G.A. (C.N.R.) — Ricevuto: 15-XI-
1976.

(*) With R, we indicate the set of real non-negative numbers.
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conditions equivalent to the supposition that the family of the dises {o.(x, ¢)]
|e> 0}, with
0@, &) = {?/ € X|d(z, y) < 8} ’

satisfies the axioms for a local basis at a point of a topological space (2).

If d is a distance on X, the pair (X, d) takes the name of H-space (see [3],).
Furthermore, if d verifies the conditions (a,), (¢,), ..., (@), 4 is called a
(@10 ... ay)-distance, and the pair (X, d) an H, , , -space.

From now on we shall introduce in H-spaces various notions existing for
ordinary metric spaces, implicitly accepting the usual definitions (3). In par-
ticular we shall speak about the completion of an H, , ., -space, meaning a
complete H, , . -space with a dense subspace isometric to (X, d).

If (X, d) is an H-space it will be useful to consider X x X an H-space also;
to this purpose we shall introduce in X x X the distance d defined as follows:

g((x, ¥), (&, y/)) = max (d(m: x'), d(y, y,)) 3

with @, 2/, y, y' € X. It is easy to verify that d induces the product topology
in X X X. The interest of this definition lies in the fact that every distance
may be seen as a function between H-spaces.

From now on we shall consider only symmetric distances, that is distances
satisfying the condition:

(0) d(z, y) = d(y, »)

for all », y € X (*). Note however that some propositions hold for general
H-spaces also.

Proposition 1. In an H,-space (X, d) the following conditions are equi-
valent:

1) d is continuous at the points of the diagonal (%), (%),

2) all convergent sequences are Cauchy,

3) if {w.} and {y,} are two convergent sequences at two points whose
distance is zero, then d(z,, ¥,) — 0.

(2) So it is clear that every distance characterizes a topology. Conversely not all
topologies are induced by some distance; this is true if and only if the topological space
is first countable (see [4], Prop. 3.1).

(®) For all definitions which are not explicitly given we refer to [7].

{(*) A topological space has a topology compatible with a (c)-distance if and only
if it is first countable and semistratifiable (see [5], Cor. 1.4).

(®) By the diagonal of X we mean the set Ay = {(#, y)C XXX |z = y}.

(5) A topological space has a topology compatible with a distance continuous at
the points of the diagonal if and only if it is developable (see [2], Prop. 3).
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Proof. 1) =>2). Let {#.} be a sequence convergent to a point x. Since
d is continuous at the point (z, x), for every &> 0 there exists a 6 > 0 such
that if d(z, y) < 6 and d(», 2) < 8, then d(y, ) < e. Since {w.; — =, in rela-
tion to & there exists an integer & such that for every n>h we have d(x, x,) <.
Therefore, for every m, n>h, we have (., z,)<e, and so {#,} is Cauchy.

2) =>3). Let {w.} and {y.; be two sequences such that (@} =@y Yoy =y
and d(z,y) = 0. By the symmetry of d the filber of the neighborhoods of @
is the same as the one for y; therefore we have {y.; —x. If we put 2., =,
and #,,,,=¥,, the sequence {z,} turns out to be convergent to », so it is
Cauchy; and so we have that for every &> 0 there exists an integer A such
that, for all m, n > h, d(%., 2,)<<é& in particular d(2n, 2an,:) <&, and so
A@n, Yn) — 0.

3) =>1). Let us assume that d is not continuous at a point (z,x). Then
we can find an ¢> 0 such that for every n there exists a point (y., 2,) such
that d(@, ¥,) < 1/n, d(z, 2,) < 1/n and d(y., 2.) > . Then the sequences {y.}
and {z.} clearly converge to @ but {d(z., y.)} does not converge to zero.

Definition 2. Let (X, d), (X', d) be two Hs-spaces and let Y c X. A
function f: X — X’ is called uniformly continuous relatively to Y if for every
£> 0 there exists a 6 > 0 such that for all 4 ¢ X such that AN ¥ == @ and
diam 4 < § we have diam (f(4)) <e ().

Consider the set of the sequences of an Hs-space (X, d) and denote by #
the relation defined as follows:

Furthermore, let us recall that (y) names the following relation: (see [4],

p. 104)
dlz,y) < 0

Ay, 2) < 0
Then the following proposition holds:

() Ve>0, 36>0, }:>d(w,z)<s.

Proposition 3. In an Hsspace the following conditions are equivalent:

1) d is uniformly continuous relatively to the diagonal,
2) d is a (y)-distance (%),
3) the relation Z is transitive.

(") Note that this condition entails both the uniform continuity of the restriction
f/¥ and the continuity of f at the points of ¥.

() A topological space has a topology compatible with a (oy)-distance if and
only if it is pseudo-metrizable (see [4], Prop. 8.7 and 8.8).
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Proof. 1) =2). Let ¢ be an arbitrary positive number, and let 6 > 0
correspond to & in the definition of uniform continuity relatively to the dia-
gonal. Let #, y, z € X such that d(z, y) < &, d(y, 2) < J; the set {ty, ), (@, 2)}
has a diameter smaller than ¢ and has a non empty intersection with the
diagonal, and so we have d(x, ) < e, and condition (y) holds.

2) =-3). Let {@.}, {y.}, {2.}, be three sequences in X such that d(a,, y,) — 0
and @y, 2,) 0. Let ¢ > 0, and let 6 > 0 correspond to ¢ in the condition (y).
Owing to the given hypotesis there exists an integer h such that for every
n>h we have d(w,, y,) <06 and d(y., z.,) <, and so by (y) we have, for
all n>h, d(x,, z,) <e. This shows that d{w,, z,) = 0.

3) =>1). Let us suppose that d is not uniformly continuous relatively to
the diagonal. Then there exists an ¢ > 0 such that for every integer n there
exists an A4,c X xX with 4,N Ay 0, diam 4, < 1/n, diam (d(A,,)) > g,
From this condition it follows that in every A, there exist at least two
points (@., @), (¥x, 2.) such that d(w., y,) < 1/n, d(@,, 2,) < 1/n, A(Yn, 22) > &
So we have that {«,}Z{y.} and {z.}%{z.} but {y,}%{z.}, being d(@,, z,) >e¢
for every n.

From now on we shall say that the distance of an H-space (X, d) satisfies
condition (0) if d is a continuous function at every point.

Recalling that every H-space is first countable, condition (§) can be cha-
racterized as follows (see [7], Theor. 5.3.4).

Proposition 4. The distance d of an Hs-space is continuous if and only
ify given two sequences {w,} and {y.} respectively convergent lo x and y, we have
A2, Yu) — dl@, y).

When a (cd)-distance satisfies condition:
(o) diw,y) =0 >z =y,

a theorem of unigueness of completion holds.

Proposition 5. If an H,-space (X, d) has two completions (Y, d'),
(Z, &"), and tf i and j are the isometric embeddings of X respectively in Y and Z,
then there ewists an unique isometry h: ¥ — Z such that hoi = j.

Proof. Let ye ¥; being Y first countable and #(X) dense in Y there
exists a sequence {z,} in X such that {i(z,)} is convergent to y. The sequence
{j(x.)} is Cauchy and so it converges to a point z€ Z. Put h(y) = z. The
point z so defined does not depend on the sequence {z,}. Tor, if {w,:} is a
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sequence such that i(z,) —y, we have {v,}%{w,} and so {j(v)}2{j(x,)}; but
{j(:v;)} is Cauchy and so it converges to a point 2’ € Z; by the continuity of 4"
we have:

!

d'(z, 2') = lim d"(j(»,), j(z,)) = 0

and, owing to {(«), it follows that 2 = 2. The function % so defined is an iso-

. . . 7
metry, because if {,}, {%7;} are two sequences such that i(x,) =y and i(z,) -9/,
by Proposition 4 we have:

d'(y, y') = lim d'(i(w,), i(w,)) = im @"(j(z.), j(z,)) = ' (hy), R(y"))

A distance on X is wniformly continuous if it verifies the following condi-
tion:
d(x, 2) << 0

(u) Ve>0, 30>0, Ay, 1) < o

} = |d{w, y) — d(z, 1) < ¢ .

Condition (x) may be characterized as follows:

Proposition 6. The distance d of an Hsspace (X, d) is uniformly
continuous if and only if, given four sequences {®.}, {y.}, {2}, {t.} such that
ATny 22) =0 and d(Y,, ta) —> 0, we have |d(z,, y,) — d(z,, t,)]| 0.

Proof. Let d be uniformly continuous and let {w.}, {y.}, {¢.}, {t.} e
such that d(z,, 2,) =0 and d(y., ?,) = 0. Let & be an arbitrary positive num-
ber, let > 0 correspond to ¢ in condition (u); in relation to & there exists
an integer & such that for every n > h we have d(z,, #2,) < ¢ and d(y,, t,) < 9.
Then we have, for every n>h, [d(2,, ¥,) — A2, t.)| <& and so0 |d(xn, ¥,) —
— (2, t,) |~ 0.

Conversely, if d is not uniformly continuous, then there exists an &> 0
such that for every n there are four points z,, ¥., 2., ¢, such that d(z,, 2,) <
<1/n, A(Yn,t.) <1/n and |d(@., ¥.) — d(2,, t,) | >¢e. From this it follows that
@0y 22) >0, Ay, t,) ~> 0, while the sequence {|d(@,, ¥.) — d(2a, t.) |} does not
converge to zero.

For Hsu-spaces one may prove a completion theorem analogous to the one
on pseudometric spaces (see [8], Cor.24.5), as can be seen in the following
proposition.

Proposition 7. BEvery Heuspace admits a completion.
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Proof. Let (X,d) be an Hge-space and let X be the set of Cauchy
sequences of X. If # = {w,} and 7 = {y.; are two Cauchy sequences of X,
then the sequence {(m,,, yn)} of X xX is Cauchy also. Moreover, d being uni-
formly continuous the, sequence {d(w,l, y,,)} is Cauchy and so it converges in
R, . Thus let us consider the function ¢: X X X — R, defined as follows:

CZ(C& ?7) = lim d(me ?/n) .

d is obviously symmetric. Our purpose is to prove that d is uniformly econ-
tinuous. Choose an arbitrary &> 0, and let 0 <& < e be. Since ¢ is uni-
formly continuous, there exists a 6> 0 corresponding to &> 0 such that

d@,2)<d, dy,t)<d = |d=z y)— dzb)|<e.

Let &= {x,}, §={y.}, 2= {2}, { = {t.} be four arbitrary elements of X
such that

d(#, 2) = lim d(@,, 2,) < 9, d(#, F) = lim d(y,, t.) < 6 .

Then there will exist an integer h such that for every #>h we have
Ay, 2,) < 8, A(Yn, t,) <6 and so |d(w,, y.) — A2, t.) | <&'. And so we have

|d(&, §) — d(Z, )| = im |d(@,, ¥.) — A2,, t.) |<E'<e.

Thus the function d is uniformly continuous and (X, d) is an Hg.-space. The
funetion 7: X —X which associates to every e X the constant sequence
{®.}, with @, =, i3 obviously an isometry between X and i(X). Let us
now prove that i(X) is dense in X. Let & = {#,}; for every e> 0 there will
exist an integer h such that d(w,., x.) <e for all m, »> h. Therefore we
have, for every n > h, ci(a";, i(x,)) = lim d(w,,, ,)<e, and this shows that &
belongs to the closure of i(X). m>t e

Let us prove that (X, d) is complete. Let {&,} be a Cauchy sequence in X.
Since ¢(X) is dense in X, for every m there exists some @,c X such that
d(&n, i(@a)) < 1/n. The sequence {z,} in X is Cauchy. For, {&,} being Cauchy,
for every &> 0 there exists an integer h such that

~ ~ €
my, n>h = d(@n, T.) <5 -

Furthermore, by the uniform continuity of d, there is a 0 > 0 corresponding
to ¢/2 sueh that

A&, 7)< 0

7 i)<a} =|d@& ) —dE b <.
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Let & be an integer such that 1/k < min [§, 1/k]. Then, for every m, n>k
we have
Fim s 1 S 1
A&y 1)) < —< J, d(&n, i(2,) < - < 5,

and so0

]J(ﬁ;yu in) - cZ('L.('szz)i %(mn)) l < g M

Thus, for every m,n > k, we have:

and from this, one can see that {z,} is Cauchy.
Let us prove that &, +2. From the uniform continuity of d it follows
that for every ¢ > 0 there exists a ¢ > 0 such that

d@, g <6, dFz<dé = d&3<e,

for every &, , Ze X. Being & Cauchy, corresponding to 8'< § there exists an
integer h such that

m, v > h = d@,, ©,) < <.
It follows that if » > h we have

d(#, i(®,) = lim d(®,,, #,) <8’ < 9.

m—> 4w

Let & be an integer such that 1/k < min [§, 1/h]. For n >k we have
Tn Fre s 1
d(&, i(z,) < 0, (&, i(2,) < - < d,

and so d(&, &,) <e. So it is proved that %, — .

Corollary 8. An H,,, -space (X, d) has a completion (X', d') such that
if (X", d"} is another completion of (X, d) there is an isometry h: X'—X" such
that hoi =74, where i and j are the isometric embeddings of X in X' and X"

respectively.
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Proof. After repeating the construction of (X, d) as in Proposition 7,
let us consider the relation # defined on X as above. Obviously we have
&#j it and only if d(&, ) = 0. From Proposition 3 we have that # is an
equivalence relation; from Proposition 6 it follows that Z is compatible with d,
that is if 2§ and 2% then d(&, 2) = d(#, ). Then if we put X'= X/%, we
can counsider the H,, -space (X', d') where

It is obvious that X’ is complete. Moreover the function i': X — X’ defined
by ¢'(x) = [¢(x)] is an isometric embedding such that +(X) is dense in X'.
So (X', d’) is a completion of (X, d).

In order to verify that (X", d") satisfies the desired properties it is suffi-
cient to recall Proposition 5.
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Sunto.

Ponendosi nella classe degli H-spazi, che sono spazi melrici generalizzati, si fa vedere
che ad alcune proprieta di convergenza corrispondonc opportune condizioni di continuita
della distanza. In particolare si dimostra che quando la distanza & wniformemente con-
tinua vale un teorema di completamento analogo a quello degli ordinari spazi metrici.



