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A mathematical model

for spinning viscoelastic molten polymers. (**)

Introduction.

In a previous paper [1] we described a mathematical model on the melt
spinning for newtonian fluids and we showed that this model is acceptable
for all materials, as polyesthers, having a negligible elastic component. How-
ever, for viscoelastic materials it is generally impossible to neglect the non-
newtonian behaviour. In such cases, in fact, both the elastic characteristic
of the material and the viscosity dependence on the elongational rate, become
too important to be neglected in the spinning process. (See, for example, the
experimental work of Paul [8]). Therefore it is necessary to formulate again
the problem by considering a rheological equation different from the newto-
nian one.

There are not many papers about this specific argument; on this subject,
the Han’s work [2] is remarkable. This autor investigated the cases of wet
spinning and of melt spinning in isothermal conditions, by adopting a three
constant Oldroyd model. However with this rheological model, the elonga-
tional viseosity is

(1) e = 311 -+ 77()10“ Ho)l

and thus it holds for viscoelastic materials having elongational viscosity in-
creasing with the rate of elongation, for example low density polyethylene and

(*) Indirizzo: Universitd di Lecce, Istibuto di Matematica, Via Arnesano, 73100
Lecce, Italia. :
(**) Ricevuto: 27-VII-1976. -
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high density polyethylene at low elongational rates; on the contrary there are
other viscoelastic materials having the elongational viscosity as a decreasing
funetion of the elongational rate, for example polystyrene, polypropylene and
high density polyethylene at high elongational rates.

Therefore in order to formulate a spinning model including all the visco-
elastic materials, the Oldroyd model must be abandoned and a more general
rheological equation used.

At this purpose we consider interesting the work of La Monte and Han [3],
which deals with the viscoelastic spinning problem by using the following
empirical equation for the elongational viscosity

(2) 7o = 3 exp (BJRT)o(ky + ko 7] .

At the present it is not possible to know from which rheological equation
eq. (2) arises.

However if =2 and k=1, eq.(2) reduces to eq.(1) with k.= 40— pp
and 7, = exp (E/RT). Therefore we can consider %, k, and q as elastic para-
meters and o and F as viscosity parameters.

The aim of this paper is first, to deduce the macroscopic viscoelastic spin-
ning equations and then to study the influence of the material parameters
on the spinning process and the yarn birefringence.

In particular our purpose is to discover under which conditions the visco-
elastic parameters make the materials spinnable.

Moreover, we are interested in calculating an optimum process for spin-
ning at maximum throughput a yarn of preselected denier and birefringence.

1. - Spinning equations.

We know (1) that the macroscopie equations of spinning are:

(3) mass flow rate: W =ogv, 4
. oF oW 2 .
(4) eq. of motion: = -+ > (v, W)— Adog+ 2+/mA P,
£ : o, % Ty Mar.—r
(5) eq. ot energy: oy —67-{—% %) =77 (Te—T) -

Now we must add an other equation giving the connection between spinning
tension and material properties.
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Since
_ ov,
(6) Peo=ny=1n.5
we have
A(z) B gy,
(7 F(2) = [2nrP,,dr = [27rn, -, dr=9(n 4 .
1] 0 “

We now suppose that the average elongational viscosity <#,> is given by
eq. (2); then eq. (7) becomes

(8) F(2) = 8 exp(B[RT)alk, + k114 %?' :

Eq. (8) is the desired equation and it ean be used as the macroscopic rheo-
logical equation for spinning viscoelastic molten polymers.
We assume, with Y. Ohzava and coworkers [6], that the skin friction at 2
is expressed by:
— for co-current flow

9 P, = 4-0.353 Q*,V:ko.ﬂlR(z)_o.SI v, — v, 1o

where the positive sign is for », > v, and negative sign is for v, < v_;
— for countercurrent flow

(10) Py = 0.353 g*»*** B(2)"" (v, + v )" .
For the heat transfer coefficient one has with Kase and Matsuo [4]
(11) b= 0.473 X10~* A"y 4 (8v,)2]1%" .

Eqgs. (3), (4), (b) and (8) become in a steady-state

(12) W = pv, 4 = constant ,

ar d -
13) o = o 0= W)—Aeg+2+/mA Py,
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(14) oG, 'z)~ . \/E RT.—T),

: . dv,\o1 dv,
(15) F(2) = 3 exp (B/RT)« [k1+ T (f:-)q ] 4%
dz dz ?
plus boundary conditions (%)
(16) A4(0)=4,, T(0)=T,, AlL)=4,, T(IL)=T,.

2. - Solution of the spinning equations.

An analytical solution of the system (11)-(16) is not possible, thus we must
choose a numerical method of integration. To this purpose by deriving respect
to z the eq. (15) and then expliciting respect to d%v,/dz? the resulting expression,
we reduce the system (12)-(16) to the following equivalent system

(17) = = X,

iy
(18) - = RByv,, ¥, T),

ar
(19) . o = v, 1),
plus initial conditions

dv, ,

(20) YO =g | =%, o0=un, 10)=T,
where
(21) R),('vz, T) E"é,vz—o.m'i(,l): + 77”)0.167(1700“__ T) ,

(1) The Barus effect does not permit to take 4, equal to the extrudate section a,.
In order to calenlate 4, from g, the Tanner method [5] can beused: Ay/a,=(1.4 0.5 f2)1/3;
where f, = Ny,/27, = (p2),, = recoverable shear evaluated at the wall, Ny = P, — P,,,
T = Py,, A = relaxation time, ;7 = shear rate and w = af the spinneret wall.
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(22)  Ruv., Y, T)= [U;WY——— W+ Wovlo |v, £ v, |11 -

B ¥:
-+ (dzzr Y-

)GXP (@/T) &+ oo YH)] Jexp (&) TG + o Yo1q) ,

v,

with

. W) 0.005 w
W=Wg, Wy=42n00s (-—) D 0.3530%09081, G = 3ko — ,
V e

Q

w 2 ; W —0-333
o= 3la — , %Z 0.473-10-4 (7) , d=ER.

Because v, is unknown, we must add two other conditions i.e.

(23) TL)y=1T;, v (L) =vg.

Here by using a fourth-order Runge Kutta predictor-corrector integration
scheme, realised on digital computer, we can obtain the numerical solution of
the system (17)-(20), (23). Of course the spinning tension is given by eq. (1), i.e.

(24) T(z) = 3 exp (A/T(2)) alkey + k2 Y (2)77 1] A(2) X (2) .

Now it is interesting to investigate the analyticity properties of eq. (18). We
see that the denominator in R, can be zero if the elongational rate is (?)

_ Ey \MeD) _
(25) Y= ("‘ kgq) = Yer (k=05  ¢5£1,0).
If the values of %,, k., and ¢ give ¥ real and finite in eq. (25), the function R,
will have a singular point, on the z-axis, when dv,(2)/dz = 7,,.

However, we must note that such singularities have been artificially intro-
duced in the model. In fact it is not possible of course to divide by
[@ 4+ oty ¥*2q], when this term becomes zero.

(?) If ky= 0 or g =1, the problem reduces to newtonian one. Moreover, if ¢ = 0
the denominator in R, is zero if &, = 0. In this last case one can easily simplify the
system (13-15) to one of the type

dy,; .
(A1) dz = f(2, Y15 ¥Y2» ¥3) (t=12,3),

which may be directly integrated by means of the Runge-Kutta method.
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(6]

Therefore we suppose to be in the neighborhood of a singular point, thus
the elengational rate is given by eq. (25) and the system (13)-(15) may be ap-

proximated by the following set of differential equations

ar -
(26) o= W — Wot+ Wy 0008 I'D: + ,Uml1.19 ,
ar ‘
(27) _d_; — Q—v——o.lm ‘vg + 5”0.167(1100__ T) ,
(28) V& + 0P )P = Fexp (— d[T) .
Moreover being
& (g—1)/(e—1) ~
&+ o PETi=a -+ (— ;—) =&(lg—1)/g),
0
we have
(29) v, = a F exp(d/T),
with
g —1
(30) =Ty Ve

Using the eq. (29) into egs. (26) and (27) one obtains

ar .
(31) o = S, 1),
a7
(32) 5;282(1'77 Ty,

with

w
(33) Sy T) = Wie, — — Fexp (— d|T) + W,

: (% exp (@)T) + vw) e

(F exp (Md/T)) 0.095 '
a

b
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Fexp (—d/T) 0187 [ (& 2 0.187
) 8 m =g (TR (Lo o) 40 @ o).

a

The system (31)-(32) has not singular points in a spinning process (F is never
zero) if & == 0 (3).

In order to join the solution in the singular points with that in non-singular
region, it is necessary to caleulate (dv./d2) using Fqgs. (31)-(32). This can be
achieved by deriving respect to z eq. (29) i.e.

dv, ; S d
(35) % = %exp (4/T) (—1% + = Sz) .

3. - Spinnability conditions.

We use the following spinnability criterion:

(a) near the solidification point the elongational rate approches to
zero (4);

(b) during the spinning process the spinning tension must be positive
and different to zevo;

(e) to certify the fibre spinning in an industrial process, the spinning
stress must not cause the thread breakdown, i.e. the spinning stress must not
exceed the critical tensile stress of the material.

Now let P,(T) be the experimental critical tensile stress given as a function
of the temperature, and let (4(2), T(2), F'(z)) be the solution for the spinning
process, calculated by the mathematical model developed. Then the spinning
stress must satisfy the following condition

F(z)

(36) : P(z)= < P(2)

(®) Really, should may be ¢ =0 if &, =0, k, #0, ¢>1. However, in this case
the system (13-15) reduces to more simple one like (Al).

(*) In order to remove the numerical singularity which should appear in eq. (18)
at 7 =0 for ¢< 1, we multiply, when is ¢< 1, for ¥~@-1 the numerator and deno-
minator in R,, i.e.

Y -
37) o= [q)zw Y- 7 y-le-1) 4 W,0-905 F-le-1).

R, _ Y2
vy 4 v |11 (d 1-1—: Y + —v-—) exp (d/T)(T-l-Dg + zxo)] Jexp (@/T) (@Y -1 + o) .



302 A. PRASTARO : [8]

where P.(z) is the critical tensile stress along the spinning axis, obtained by
resolving the system

T =1T().

If the spinning tension is positive for elongational rate values grater than a
minimum value different to zero only, the spinnability is hindered. In fact in
such cases it will not be possible to arrive at the solidification point with a po-
sitive tension.

The situation is summarized in tab. 1.

In the last we note that as the elongational rate increases, a material can
assume different viscoelastic parameters values. This be considered in the
spinning process calculations.

Because the more general elongational viscosity line is like in fig. 1, we will
divide the variability regions in three zones that are possible to fit with the
model reported in eq. (2).

Of course a material will be spinnable if its behaviour at the different elen-
gational rates, satisfies the spinnability conditions (tab. 1).

Moreover, it is interesting te note that the mewtonian behaviour at low
clongational rates promoves the spinnability and in same cases makes possible
the spinning process.

For example, let the spinning conditions be

W == 0.568 x10~* (g.[sec.), T,

270 (°C), T,=115(°C), A,=0.01 (ecm?),
A, =0.924 X10~* (cm?), I . =25(°C), v,=0, v, = O;
and let the characteristics of the material be
o =0.9 (g./em?), C, = 0.493 (cal./g. °C) ;
let the elongational visqosity for < 0.01 (sec™t) be
(38) 7.= 3 x0.478 x10%exp (3000/T)

and for 7> 0.01 (sec™?)

397 o= 3 %0.139 exp (3000/T) =2 .
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In this case the mathematical model gives a solution as is shown in fig. 2-(a),
i.e. the filament section settles on the prefixed value A, = 0.924-10-* (cm?)
in the neighborhood of the solidification point.

Instead if the elongational viscosity should be given by eq. (39) still for
¥ < 0.01 (sec™?), the section should not settle on the prefixed value, fig. 2-(b).

In this last case, therefore, it should be more difficult obtain a thread with
constant denier, in an industrial process, because little variations in the spin-
ning conditions, always possible, should cause notable variations in the thread
section (*). This is well known from pratical industrial experience. For example
it is not easy to obtain constant sections for the polypropilenic materials. In
fact the polypropylene has not newtonian behaviour at low elongational rates.
La Monte and Han observed [3] that for this material, g-parameter is approxi-
mately 0.117 over the range of elongational rates (0.04 — 0.4) sec.~%

4. = Computer program for calculating the spinning solution.

We have already shown in this paper that to integrate the'system (12)-(16)
we use the auxiliary system (17)-(20).

In the neighborhood of a singular point this system is replaced by the
egs. (31), (32) and (35).

If ¢g<1, eq. (18) is replaced by the eq. (37).

To certify the fibre spinning in industrial processes it is needed to add the
spinnability conditions already seen also. Hence the system for the spinning
viscoelastic materials is

ra) eq. (18) must be replaced with eq. (37) if ¢<<1,

b) this system must be replaced by (31), (32) and (35)
A) system (17)-(20) s if there is a singular point in R,,

¢) other auxiliary systems type (41), if ¢=0, k=0,
or k=10, >1.

B) lim#(2) = 0. 0) P..(2) < P.(2). D) F(z)>0.

2~rL

(*°) This agrees with Matovic and Pearson [7] which noted that elongational vis-
cosity as 5, == 31,k 7=V, (¢ < 1), hinders spinnability.
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Of course albeit from the mathematical point of view the conditions B), C)
and D) are superabundant respect to the system (17)-(20), they are necessary
in order to consider acceptable the spinning solution from the industrial point
of view. So if under a set of spinning conditions, the numerical integration of
the system (17)-(20) gives a solution which does not satisfy the one among the
conditions B), C) and D) at last, we can conclude that the material is not
spinnable.

To obtain the solution of the system A), B), O) and D) we can use a digital
computer. To this purpose, we elaborated a calculation program, Fortran
language, by the which it is possible to rapidly learn the spinning solutions.

The program imput and output are as follows:

Imput: W, o, 0y, 4o, A1, T, T,y Ty 113 s Moy Vs Vu
Output: F¥, 4%(z), T¥(2), A(2), T'(2), F(2), 4n ,

where:

7 = newtonian limit of the #, i.e. 7} = lim 7,(9)
70
F7, A¥(2), T¥(?) = spinning tension at the solidification point,
cross-section and temperature profiles along the spinning axis respectively in
the newtonian approximation.

The newtonian approximation is usuful to calculate the first tentative value
of 7#(0) in the predictor-corrector scheme used to satisfy the boundary condi-
tions (23).

Details of the computational procedure used are given in the following
flow-chart scheme.
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S

v

calculate nevtonian aporoxi-
mation solution

calculate y—N (0)

-1 no
~ assure p (0)

ves

5(0)=7" (0)

solve system (B) with
numerical Runge-Kutta
method

condition
(23)
is satisfied

with the fixed
conditions the
system is not
spinnable

N

conditions (B), (C)
(D) are satisfied
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5. - Spinning solution dependence on the material parameters and the condition
spinning parameters.

‘We note that 4, T and I’ have the following funetional dependence

(40) A = A5 0., 0, Cpy Wy Ay, A, Ty T)
(41) T=1T(; M0 Cpoy Wy 4y, 4y, T., Ty
(42) F = F(z; 1., 0 Cpy, W, 4y, AL, T, T,) .

The dipendence on the 7, implies that 4, I' and I are related to the visco-
elastic parameters #, e, ky, &y and g.

These dependences ecan be graphically represented by a digital computer.
So one can note that the spinning solution dependence on the parameters
0,C,, Wy Ay, Ay, T, and T, is similar to the newtonian case (1).

However, now we can obtain a new information, i.e. along the spinning
axis the tension is not constant, having a variation caracterized from a depres-

sion zone, near the spinneret, more or less accentuated and narrow.

6. - Critical spinning conditions,

By the spinning solutions it is possible to know the fibre birefringence; in
fact one has (1)

M I

L

(43) M= omT oK 4,

According to eqs. (40)-(42), eq. (43) implies that the birefringence has the fol-
lowing dependence on the spinning parameters

(44) An = An(n,, 0, Cpy W,y Ay, 4, T, Ty} .

By the aid of the eq. (44) and the spinning solutions, we can obtain the critical
spinning condition, i.e. the conditicns which realise the maximum fibre pro-
duction with fixed section and birefringence 4n,. In fact it is enough to resolve
the system

(45) W = maximum, An(d,, W)= 4n,, P..(z; 4o, W)<P,.

This is well explained in a previous paper [1].
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The resolution of the system (45) allows us to know the maximum collection
rate i.e.

(46) i) — WA,

This information is desiderable in view of the technological importance of
the spinning process in the manufacture of man-made fibres.

Conclusions.

The mathematical model developed, describes the dynamies of non-iso-
thermal melt spinning for the viscoelastic materials., Because a right consti-
tutive equation for all viscoelastic materials is unknown, we used, with La
Monte and Han [3], an empirical equation for the elongational viscosity. Thus
the spinning tension has been related to the empirical viscoelastic parameters
{(#, o, ky, ks, q) and the elongational rate §.

Then the spinning solution A4(2), T'(2) and F(z), i.e. the profiles of the cross-
sectional area, temperature and spinning tension, along the spinning axis, de-
pends on these viscoelastic parameters (longer than o, C,, T, Ty, 4., 4. and
W as in the newtonian model). We showed the influence of all these different
parameters on the spinning tension along the spinning axis and its shape very
much related to the ¢ parameter.

By adopting the following criterion for spinnability:

(a) near the solidification point the elongational rate approches to zero,
(b) the spinning tension is always positive and different to zero,

(c) the tensile stress does not exceed the critical tensile stress of the
material

we have discussed the problem of spinnability in terms of viscoelastic para-
meters (e, &y, ks, q).

According to Tab. 1, we can conclude that the class of spinnable visco-
elastic materials is limited enough and this agree with the difficulties encoun-
tered in the spinning such materials.

Moreover we noted that a newtoniann behavicur at low elongational rates,
enhances spinnability. .

By using a already known equation, we correlated the yarn birefringence
with the spinning solution and therefore with all problem parameters. Here
we observe that changing the parameters values, the behaviour of An is generally
monotone exeept for ¢. Of course this is caused by the similar behaviour of
the spinning tension.
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Index of netations.

A = thread section

A(z) = thread section at the z distance from the spinneret
0, = specific heat at constant pressure

D = swelled exfrudate diameter

d = die diameter

Il = constant

I = gpinning tension

F(z) = spinning tension at the z distance from the spinneret
g == gravitational aceelleration

h ==heat transfer coefficient

I = Boltzmann constant = 3.31 x10-2 cal/°C

Ly, ke = constants

L ==solidification point on the thread

M = constant determined by optical properties of the molecules

P, = breakdown

P,, = spinning stress

P;; = stress tensor

P, ==gkin friction

q = constant

R = gas constant = 1.987 cal/degree

. R(z) = radius of the thread section at the z distance from the spinneret

T = temperature

T(2) = temperature at the 2 distance from the spinneret
T = temperature of the air

t = time coordinate

v, = air velocity parallel to the thread

v, == air velocity perpendicular to the thread

(vr, v v;) = rate components in the cylindrical reference system

(r, @, 2) = cylindrical reference system

o = constant in the elongational viscosity expression
¥ = elongational rate

17, = elongational viscosity

7o = newtonian viscosity

[14]
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2(2)

1 - . .
Moy = i f 2qrn, dr = average elongational viscosity

[
Aoy Ho = elastic constants
y* = air kinematic viscosity
o = density
0¥ = air density.

Captions to the figures,

Fig. 1. - Representation of the elongational viscosity vs. elongational rate behaviour.
In the regions I, IT and IIT the eq. (2) is & good model to fit the experimental data
for the elongational viscosity.

e

.

Fig. 1.
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Tig. 2. - Example of the newtonian behaviour influence at low elongational rate on
the spinnability conditions: (a) profiles of the cross-section A(z) and temperature T'(z)
along the spinning axis in a material with newtonian behaviour at low elongational
rates, (b) profiles of the cross-section A(g) and temperature 7'(z) along the spinning

axis in a material with clongational viscosity decreasing in all range of the elongational
rate variability.
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Tas. 1. - Viscoelastic parameters and spynnability.
Iy Ies ey fk, q r=0 singular observations
points on the
in eq. (18) spinnability
>0 =0 o — always never newtonian
=0 >0 =0 >0 always g>1:9=0
¢ << 1: never
=0 >0 =0 =0 always always
=0 >0 =0 <0 always
>0 >0 >0 >0 always y = be if
a = -+ 2n
n=1,2,.., 0
>0 >0 >0 =0 always never
>0 >0 >0 <0 always 7= b°
<0 >0 <0 >0 g<l:y<ec® 7= b im. for §>c¢*
g>1: p>¢ 7y =0 im. for §<<¢*
<0 >0 <0 =0 p<et never im. for y>c¢?
<0 >0 <0 <0 <t never im. for 7> ¢°
>0 <0 < 0 =0 el never im. for et
>0 <0 <0 >0 g>1:p<ec 7 =0 im. for > ¢
g<l:p=c® g =10 im. for 7<ec®
>0 <0 <0 <0 7=t never im. for § < c®
i.m. = inconsistent model
a=1/(q—1), b==Ikfkq, c¢=—Ikfk.
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Summary.

A mathematical model for spinning viscoelastic materials is proposed. This work can
be considered the continuation of the paper « 4 mathematical model for spimming molten
polymers and conditions of spinning » [1], which treated the case of newtonian materials.

The viscoelastic system, as more differs from the mewtonian as the elastic component
is present; thus the viscoelastic mathematical model can not be inferred from the analysis
of the previous paper; on the contrary the viscoelastic model includes, as particular case,
the newtonian model.

v The spinning process was analyzed by addyng the rheological equation for wviscoelastic
materials to the set of simultaneous partial differential equations describing a general mollen
spinning process, i.e.

mass flow rate: W=gv, 4,
. . oF oW o . —
equation of motion: Foiaievs -+ Py (v, W) — dog + 2/ mAP;
2 2

a7 a7 E
equation of energy: oC, (6_t + v, wéz) = 2 ‘/—; WMT,—1T)

o,
rheological equation: I = 3 exp (B/RD)alk, + kype-1]4 -;—” .
2
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In the above equations, the distance z from the spinnerel and time 1, are indipendent va-
riables; local velocity wv,, cross-sectional area A4, temperature T and spinning tension T,
are dependent variables; o 4s the densily of the polymer filament, g the gravitational acce-
leration, Py the skin friction, O, the isobaric specific heat of the molien filament, h the heat
transfer coefficient, T'  the air temperaiure and B, «, &y, ky and q are constanis; B is the
gas constant.

We gave the steady-state (8/8% = 0) numerical solutions i.e. the filament cross-section
A(z), filament temperature T(z) and filament tension F(z), as function of positions z and
we related them to the parameters which influence the process of spinning: material para-
meters (g, Cp, B, &, ky, Ly, q) and spinning condilions parameters (A, 4q, T, Ty, W).
We related the yarn birefringence An to the same parameters also.

Moreover, we proposed lo investigale which bounds impose the spinnability criterion
on the viscoelastic parameters (o, &y, ks, q) and which conditions realize the maximum yarn
production with fized denier and section.
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