R. FARANO (*)

A quasilinear equation of hyperbolic type arising from neutron transport. (**)

1. - Introduction.

The mathematical structure of monoenergetic neutron transport initial-value problems under various boundary conditions has been studied in several papers (see, for instance, [3]₁, [3]₂, [16]).

Recently [8] Hendry considered a neutron transport problem in a slab with moving boundaries; he obtained a formal solution but he did not attempt an existence proof. The existence of a unique solution has been discussed in [4]. The original and practical interest in the problem with moving boundaries arose in studies of nuclear reactor accidents [7].

The approach to the problem is based on some results for abstract evolution equations in the Hilbert space L^2 and, more generally, in L^p spaces for p > 1 [15]. However, from a physical point of view, the L^1 space is more appropriate than L^p spaces with p > 1 [13]₂, [14], (see also section 2).

In this paper, we shall study a more general monoenergetic neutron trasport initial-value problem (i.e., with moving boundaries and with cross sections

^(*) Indirizzo: Istituto Matematico, Università di Camerino, 62032 Camerino (Macerata), Italia.

^(**) Work performed under the auspicies of G.N.F.M. (C.N.R.) - Ricevuto: 27-IV-1976.

depending on the temperature). Specifically, we consider the following integrodifferential system

$$(1.1) \begin{cases} \frac{\partial N}{\partial t} = v\mu \frac{\partial N}{\partial x} - v \mathcal{E}(x, t, T) N + \frac{v}{2} \gamma(x, t, T) \int_{-1}^{1} N(x, \mu', t) d\mu', \\ \frac{\partial T}{\partial t} = -h[T(x, t) - T_{f}] + k(x, t, T) b(t) \int_{-a_{1}}^{a_{1}} dx' \int_{-1}^{1} N(x', \mu', t) d\mu', \\ 0 < t \le t', \qquad |x| \le a_{1}, \qquad |\mu| < 1, \qquad b(t) = \frac{a(t)}{a_{1}}, \end{cases}$$

with boundary conditions

(1.2)
$$N(-a_1, \mu, t) = 0$$
 $\mu \in (0, 1)$, $N(+a_1, \mu, t) = 0$ $\mu \in (-1, 0)$

and initial conditions

(1.3)
$$N(x, \mu, 0) = N_0(x, \mu)$$
, $T(x, 0) = T_0(x)$, $|x| \le a_1$.

In (1.1)-(1.3), $N = N(x, \mu, t)$ is the neutron density function, T = T(x, t) is the temperature at x and t, a(t) is a continuously differentiable function such that $0 < a(0) \le a(t) \le a_1$ for any $t \in [0, t']$, and we use standard symbols [2], [5], [13]₁, [13]₂. Following [4], we assume that

(1.4)
$$\Sigma(x, t, T) = \gamma(x, t, T) = k(x, t, T) = 0$$

for $x \in [-a_1, a(t)]$ and $x \in [a(t), a_1]$.

If we suppose that the freed-back due to a variation of temperature is linear, we have $[13]_1$, $[13]_2$

(1.5)
$$\Sigma(x, t, T) = \Sigma_0(x, t)(1 + \alpha_1 \theta)$$
, $\gamma(x, t, T) = \gamma_0(x, t)(1 + \alpha_2 \theta)$,

(1.6)
$$k(x, t, T) = k_0(x, t)(1 + \alpha_3 \theta), \qquad T(x, t) = \theta(x, t) + T_r,$$

where $\Sigma_0(x, t)$, $\gamma_0(x, t)$ and $k_0(x, t)$ satisfy (1.4), $\alpha_i \in R_1$ for i = 1, 2, 3, and T_r is a suitable reference temperature.

Moreover, we make the following assumption:

a.1)
$$0 < S_i(x, t) < \overline{S}_i , \qquad |x| < a(t) , t \in [0, t'],$$

$$S_i(x, t) = 0 , \qquad x \in [-a_1, a(t)] , x \in [a(t), a_1];$$

- a.2) for any $t \in [0, t']$, $S_i(x, t)$ is continuous with respect to x, a.e. on $[-a_1, a_1]$;
- a.3) $S_i(x, t)$ is continuously differentiable with respect to t, uniformly in x, a.e. on $[-a_1, a_1]$;
- a.4) for any $t \in [0, t']$, $\partial S_i/\partial t$ is continuous and bounded with respect to x, a.e. on $[-a_1, a_1]$, with $|\partial S_i/\partial t| < S_t^*$;

where the symbol $S_i(x, t)$, i = 1, 2, 3, denotes $\Sigma_0(x, t)$, $\gamma_0(x, t)$ and $k_0(x, t)$ respectively. Due to relations (1.5)-(1.6), system (1.1) can be put into the form

$$(1.7) \begin{cases} \frac{\partial N}{\partial t} = A_1 N + [v\gamma_0(x,t)J - v\Sigma_0(x,t)I]N - v\theta[\alpha_2\gamma_0(x,t)J - \alpha_1\Sigma_0(x,t)I]N \\ \frac{\partial \theta}{\partial t} = -h\theta + k_0(x,t)b(t)B_1N + \alpha_3k_0(x,t)b(t)\theta B_1N + h(T_f - T_r), \end{cases}$$

where the operators A_1 , J and B_1 are defined in section 2, and where I is the identity operator.

2. - The mathematical setting.

In order to formulate the system (1.7) together with the boundary and initial conditions (1.2)-(1.3) as an abstract evolution problem, we put $Q_1 = [-a_1, a_1]$, $Q_2 = [-1, 1]$ and $Q = Q_1 \times Q_2$. We denote by X_1 the Banach space $L_1(Q)$ of all complex valued functions $f_1(x, \mu)$ such that $|f_1(x, \mu)|$ is Lebesgue integrable in Q and by X_2 the Banach space $C[Q_1]$ of continuous functions $f_2(x)$. The norms in X_1 and in X_2 are defined respectively by

$$\|f_1\|_1 \! = \! \int\limits_{-a_1}^{a_1} \mathrm{d}x \int\limits_{-1}^{1} \; |f_1(x,\mu)| \, \mathrm{d}\mu \; , \qquad \|f_2\|_2 = \max \left\{ |f_2(x)|, \, x \in Q_1 \right\}, \; f_1 \in X_1 \; , \; f_2 \in X_2 \; .$$

Then $X = X_1 \times X_2$, with norm

(2.1)
$$||f|| = \bar{k}_0 ||f_1||_1 + h ||f_2||_2, \qquad f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \in X,$$

is a Banach space. We remark that the use of X_1 is justified by the fact, that $||N||_1$ is the total number of neutrons in the slab at the instant t. The constants \bar{k}_0 and h in the norm (2.1) are used to adjust dimensions, so that $||\cdot||$ is proportional to an energy per unit time.

Finally, let Y = C([0, t'], X) the Banach space of continuous functions $u: [0, t'] \to X$ equipped with norm $|||u||| = \sup \{||u(t)||, t \in [0, t']\}$.

We now define the following linear operators:

$$(2.2) A_1 f_1 = -v\mu \frac{\partial f_1}{\partial x}, D(A_1) = \{f_1 \in X_1 : A_1 f_1 \in X_1; f_1 \text{ satisfies } (1.2)\},$$

$$R(A_1) \subset X_1$$

$$(2.3) Jf_1 = \frac{1}{2} \int_{-1}^{1} f_1(x,\mu) \, \mathrm{d}\mu , D(J) = X_1 , R(J) \in X_1 ,$$

(2.4)
$$B_1 f_1 = \int_{-a_1}^{a_1} dx \int_{-1}^{1} f_1(x, \mu) d\mu$$
; $D(B_1) = X_1$, $R(B_1) \in X_2$,

$$(2.5) B_0(t)f_1 = v\gamma_0(x,t)Jf_1 - v\Sigma_0(x,t)f_1, D(B_0(t)) = X_1, R(B_0(t)) \subset X_1,$$

(2.6)
$$B_1(t)f_1 = k_0(x, t) b(t) B_1 f_1, \qquad D(B_1(t)) = X_1, \qquad R(B_1(t)) \subset X_2,$$

$$(2.7) Af = \begin{bmatrix} A_1 & 0 \\ 0 & -hl \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}, D(A) = D(A_1) \times X_2, R(A) \subset X,$$

$$(2.8) B(t)f = \begin{bmatrix} B_0(t) & 0 \\ B_1(t) & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}, D(B(t)) = X, R(B(t)) \subset X,$$

and nonlinear operator

$$(2.9) F(t,f) = \begin{bmatrix} vf_2 \alpha_2 \gamma_0(x,t) Jf_1 - v\alpha_1 f_2 \Sigma_0(x,t) If_1 \\ \alpha_3 f_2 B_1(t) f_1 \end{bmatrix},$$
$$D(F(t,f)) = [0,t'] \times X, R(F(t,f)) \subset X.$$

3. - The abstract problem.

Due to (2.2)-(2.9) the system (1.7) with boundary and initial conditions (1.2)-(1.3) is transformed into the abstract semilinear initial value problem

(3.1)
$$\frac{\mathrm{d}u}{\mathrm{d}t} = Au(t) + B(t)u(t) + F(t, u) + v_0, \qquad \lim_{t \to 0^+} u(t) = u_0,$$

where u(t) is a transformation from [0, t'] into X, the limit and differentiability are defined in the strong sense, and where

$$u(t) = \begin{bmatrix} u_{\scriptscriptstyle 1}(t) \\ u_{\scriptscriptstyle 2}(t) \end{bmatrix} = \begin{bmatrix} N(x,\mu,t) \\ \theta(x,t) \end{bmatrix}, \quad u_{\scriptscriptstyle 0} = \begin{bmatrix} N_{\scriptscriptstyle 0}(x,\mu) \\ T_{\scriptscriptstyle 0}(x) - T_r \end{bmatrix}, \quad v_{\scriptscriptstyle 0} = \begin{bmatrix} 0 \\ T_{\scriptscriptstyle f} - T_r \end{bmatrix}.$$

In Lemma 4.1 of the section 4, we shall prove that $A \in G(1, 0)$ that is A is the generator of a strongly continuous semigroup of contraction operators [1], [10]₁, [11]; therefore, the semilinear evolution equation (3.1) is of hyperbolic type and it can be formally reduced to the nonlinear integral equation [10]₂

(3.2)
$$u(t) = w_0(t) + \int_0^t \exp[(t-s)A] \{B(s)u(s) + F(s,u(s))\} ds,$$

where

$$w_0(t) = \exp[tA]u_0 + \int_0^t \exp[(t-s)A]v_0 ds$$
.

In the mathematical theory of semilinear equations of evolution of hyperbolic type we have the following results $[10]_2$.

If the nonlinear term G(t, u) = B(t) u(t) + F(t, u(t)) is continuous on $[0, t'] \times X$ to X and uniformly Lipschitz continuous in u, in a neighborhood of $u_0 \in X$, then for any $u_0 \in X$, (3.2) has a unique solution $u \in Y$. Following Browder [6], a such solution is said a «mild solution» of (3.1). Moreover, if G(t, u) has continuous derivatives G_t and G_u , where G_u is the Fréchet derivative [11], then the mild solution is a «strict solution» (i.e. u(t) is continuous on [0, t'], continuously differentiable on (0, t'] and Au(t) exists on [0, t']).

Lemmas 4.1-4.6 of section 4 lead to the following Theorem

Theorem 3.1. System (1.7) with boundary and initial conditions (1.2)-(1.3) has a unique (local in t) mild solution $u \in Y$ which is also a strict solution.

4. - Properties of the operators.

We now obtain some basic properties of the operators defined in section 2, which prove the Theorem 3.1.

Lemma 4.1. A is densely defined and dissipative operator with R(I-A) = X (i.e. $A \in G(1, 0)$ [12]).

Proof. From [15], [16] and since $-hI \in B(X_2)$, it follows that D(A) is dense in X. Following [17], we have that the equation

$$(zI-A)f=g g\in X, z>0,$$

has a unique solution $f \in D(A)$, that is R(zI - A) = X for any z > 0.

Moreover, we have

$$||R(z, A)g|| = ||f|| \leqslant z^{-1} ||g||;$$

hence, if g = (I - sA)f with $f \in D(A)$, we obtain

$$||f|| = \left|\left|\frac{1}{s}R\left(\frac{1}{s},A\right)g\right|\right| \leq ||g|| = ||(l-sA)f||,$$

which proves that A is an dissipative operator.

The following lemmas can easily proved

Lemma 4.2. $J \in B(X_1)$ and $||Jf_1||_1 \le ||f_1||_1$; $B_1 \in B(X_1, X_2)$ and $||B_1f_1||_2 \le ||f_1||_1$.

Lemma 4.3. i) $B_0(t)$ is a continuously differentiable mapping (c.d.m.) from [0, t'] to $B(X_1)$ with derivative (in the sense of the norm in $B(X_1)$) given by

$$\frac{\mathrm{d}}{\mathrm{d}t}B_0(t) = v\bigg(\frac{\partial}{\partial t}\gamma_0(x,t)J - \frac{\partial}{\partial t}\,\Sigma_0(x,t)I\bigg) \in B(X_1)\;.$$

ii) $B_1(t)$ is a c.d.m. from [0, t'] to $B(X_1, X_2)$ with derivative (in the sense of the norm in $B(X_1, X_2)$) given by

$$\frac{\mathrm{d}}{\mathrm{d}t}\,B_1(t) = \left(b\left(t\right)\frac{\mathrm{d}}{\mathrm{d}t}\,k_0(x,\,t) - b\left(t\right)k_0(x,\,t)\right)B_1 \in B(X_1,\,X_2) \ .$$

iii) B(t) is a c.d.m. from [0, t'] to B(X) with derivative in the sense of the norm in B(X) given by

$$rac{\mathrm{d}}{\mathrm{d}t}\,B(t)\!=\!egin{bmatrix} rac{\mathrm{d}}{\mathrm{d}t}\,B_0(t) & 0 \ & & \ rac{\mathrm{d}}{\mathrm{d}t}\,B_1(t) & 0 \end{bmatrix}\!\in\!B(X)\;.$$

Proof. i) From assumption a.2) and $f_1 \in X_1$ it follows that integrals

$$\int_{-a_{1}}^{a_{1}} |S_{i}(x,t)| \left[\int_{-1}^{1} |f_{1}(x,\mu)| \, \mathrm{d}\mu \right] \, \mathrm{d}x \qquad (i=1,2)$$

exist. Thus, from assumption a.1) we obtain

(4.1)
$$||B_0(t)f_1||_1 \leqslant v(\bar{\gamma}_0 + \bar{\Sigma}_0)||f_1||_1.$$

(4.1) with assumption a.3) proves that $B_0(t)$ is a c.m. from [0, t'] to $B(X_1)$. Moreover, given $\varepsilon > 0$ and $t \in [0, t']$, we obtain from assumption a.3) and Lemma 4.2

$$\left\|\frac{B_0(t+\varDelta t)-B_0(t)}{\varDelta t}f_1-v\left(\frac{\partial}{\partial t}\gamma_0(x,t)J-\frac{\partial}{\partial t}\Sigma_0(x,t)I\right)f_1\right\|<\varepsilon\|f_1\|_1,$$

since

$$\left| \left| rac{\gamma_0(x,t+arDelta t) - \gamma_0(x,t)}{arDelta t} - rac{\partial}{\partial t} \, \gamma_0(x,t)
ight| + v \, \left| \left| rac{\Sigma_0(x,t+arDelta t) - \Sigma_0(x,t)}{arDelta t} - rac{\partial}{\partial t} \, \Sigma_0(x,t)
ight| < arepsilon \; ,$$

uniformly in x a.e. on Q_1 , provided that $|\Delta t| < \delta$, where $\delta = \delta(\varepsilon, t)$, does not depend on x. Finally, we obtain from assumption a.1) and from Lemma 4.2

(4.2)
$$\left\| \frac{\mathrm{d}}{\mathrm{d}t} B_0(t) f_1 \right\|_1 \leq v(\gamma^* + \mathcal{E}_0^*) \|f_1\|_1.$$

ii) Can be proved in an analogous way and, in particular, we have

where $\bar{b} = \max b(t), b^* = \max |b(t)|, t \in [0, t'].$

iii) Follows from i) and ii) and we have

(4.4)
$$||B(t)f|| \leq [v(\bar{\gamma}_0 + \overline{\Sigma}_0) - h\bar{b}] \cdot ||f||$$
.

Lemma 4.4. The nonlinear operator F(t, f) is a c.m. on $[0, t'] \times X$ to X and locally Lipschitz continuous in f.

Proof. By putting

$$F_1(f) = \begin{bmatrix} -f_2f_1 \\ 0 \end{bmatrix}, \quad F_2(f) = \begin{bmatrix} f_2Jf_1 \\ 0 \end{bmatrix}, \quad F_3(f) = \begin{bmatrix} 0 \\ f_2B_1f_1 \end{bmatrix},$$

we then have

$$F(t, u) = v\alpha_1 \Sigma_0(x, t) F_1(t) + v\alpha_2 \gamma_0(x, t) F_2(t) + b(t) k_0(x, t) F_3(t) \alpha_3.$$

By taking in account that

$$||F_i(f) - F_i(g)|| \leq \frac{1}{2} C \left[||f_2 - g_2||_2 (||f_1||_1 - ||g_1||_1) + ||f_1 - g_1||_1 (||f_2||_2 + ||g_2||_2) \right],$$

where $C = \bar{k}_0$ if i = 1, 2, and C = h if i = 3. Thus, by using Lemma 4.2, Lemma 4.3 and assumption a.1), we obtain after some manipulations

(4.5)
$$||F(t, f) - F(t, g)|| \leq \alpha (||f|| + ||g||) ||f - g||$$

and, since F(t, 0) = 0,

$$||F(t, f)|| \leqslant \alpha ||f||^2,$$

where

$$lpha = rac{1}{2} \left(rac{v(\left|lpha_1\left|ar{oldsymbol{\Sigma}}_0 + \left|lpha_2\left|ar{oldsymbol{\gamma}}_0
ight)}{h} + ar{b}\left|lpha_3
ight|
ight).$$

Given $f_0 \in X$, if we consider the sphere

$$\bar{S}(f_0, r) = \{ f \in X \colon ||f_0 - f|| \leqslant r \},$$

we then obtain from (4.5) and (4.6):

$$||F(t, t) - F(t, g)|| \le 2M ||t - g||, \qquad ||F(t, t)|| \le M ||t||^2,$$

for every $f, g \in \overline{S}(f_0, r)$ since ||f|| and ||g|| are not larger than $M/\alpha = (r + ||f_0||)$. Finally, by using assumption a.1), we obtain

$$\begin{split} \|F(t+\varDelta t,f+\varDelta f)-F(t,f)\| \leqslant \\ \leqslant v \, |\alpha_{1}| [\max_{x} |\mathcal{\Sigma}_{0}(x,t+\varDelta t)-\mathcal{\Sigma}_{0}(x,t)| \cdot \|F_{1}(f+\varDelta f)\| + \|F_{1}(f+\varDelta f)-F_{1}(f)\|\overline{\mathcal{\Sigma}}_{0}] \ + \\ + v |\alpha_{2}| [\max_{x} |\gamma_{0}(x,t+\varDelta t)-\gamma_{0}(x,t)| \cdot \|F_{2}(f+\varDelta f)\| + \|F_{2}(f+\varDelta f)-F_{2}(f)\|\overline{\gamma}_{0}] + \\ + |\alpha_{3}| [\max_{x} |b(t+\varDelta t) \, k_{0}(x,t+\varDelta t) - b(t) k_{0}(x,t)| \cdot \\ & \cdot \|F_{3}(f+\varDelta f)\| + \|F_{2}(f+\varDelta f)-F_{3}(f)\|\overline{b}k_{0}], \end{split}$$

and the continuity of F(t, f) follows from assumption a.3), (4.5) and (4.6) which are valid also for $||F_i(f) - F_i(g)||$.

Further properties of F(t, f) are stated in the following

Lemma 4.5. F(t, f) has continuous derivatives F_t and F_t where F_t means the Fréchet derivative at any $f \in X$ [11].

Proof. In fact, after a few manipulations we obtain

$$F(t, f + g) - F(t, f) = F_f(t) g + w(t, g)$$
,

where

$$F_{\scriptscriptstyle f}(t)g \, = \, \begin{bmatrix} -\,v\,\,\varSigma_{\scriptscriptstyle 0}(x,\,t)\,\,\alpha_{\scriptscriptstyle 1}f_{\scriptscriptstyle 2}I \,+\,v\gamma_{\scriptscriptstyle 0}(x,\,t)\alpha_{\scriptscriptstyle 2}f_{\scriptscriptstyle 2}J & \,\, -\,v\,\varSigma_{\scriptscriptstyle 0}(x,\,t)\,\alpha_{\scriptscriptstyle 1}f_{\scriptscriptstyle 1}I \,+\,Jf_{\scriptscriptstyle 1} \\ \alpha_{\scriptscriptstyle 3}\,f_{\scriptscriptstyle 1}\,B_{\scriptscriptstyle 1}(t) & \,\, \alpha_{\scriptscriptstyle 3}B_{\scriptscriptstyle 1}(t)\,f_{\scriptscriptstyle 1} \end{bmatrix} \begin{bmatrix} g_{\scriptscriptstyle 1} \\ g_{\scriptscriptstyle 2} \end{bmatrix}$$

is a linear operator and where

$$w(t, g) = \left[egin{aligned} -vlpha_1 \, arSigma_0(x, t) g_1 g_2 + vlpha_2 \, \gamma_0(x, t) \, g_2 J g_1 \ g_2 \, B_1(t) \, g_1 \end{aligned}
ight]$$

is such that $||w(t, g)|| \le 2\alpha ||g||^2$. Our assertion then follows from assumptions a.4) and Lemma 4.3.

Combining, Lemma 4.4 and Lemma 4.5 with iii) of Lemma 4.3 we obtain

Lemma 4.6. G(t, f) = B(t)f + F(t, f) is a c.m. on $[0, t'] \times X$ to X and locally Lipschitz continuous in f, has continuous derivatives G_t and G_f . We also have

$$(4.8) G_t = \frac{\mathrm{d}}{\mathrm{d}t}B(t)f + F_t, G_t = B(t) + F_t,$$

5. - An upper bound for t' and ||u(t)||.

The goal of the last part of this paper is to evaluate an upper bound for t' and to find an upper bound for the continuous and non-negative function ||u(t)||. To this purpose we define the following operator

(5.1)
$$\begin{cases} P(w) = w_0(t) = \int_0^t \exp[(t-s)A] \{B(s)w(s) + F(s, w(s))\} ds \\ D(P) = S(w_0, r) = \{w \in Y : ||w_0 - w|| \le r\} \subset Y \end{cases}.$$

Theorem 5.1. If we choose $t' < \beta_1^{-1}$ where $\beta_1 = \beta(r + ||w_0||)/r$ and $\beta = [v(\bar{\gamma}_0 + \bar{\Sigma}_0) + h\bar{b} + 2\alpha(r + ||w_0||)]$, then the equation P(u) = u has a unique solution $u \in S(w_0, r)$ such that $||u_n - u|| \to 0$ as $n \to \infty$, where $u_0 = w_0$, $u_{n+1} = P(u_n)$, $n = 0, 1, 2, \ldots$

Proof. Let $w_i \in S(w_0, r)$, i = 1, 2. We have $|||w_i||| \leq (r + ||w_0||)$ and consequently

$$(5.2) \quad \sup \left\{ \|P(w_1)(t) - P(w_2)(t)\|, t \in [0, t'] \right\} = \|P(w_1) - P(w_2)\| \leqslant t'\beta \|w_1 - w_2\|,$$

where we used Lemma 4.3 and Lemma 4.4. In an analogous way, we have

(5.2)'
$$|||P(w_1) - w_0||| \le t' \left[v(\overline{\gamma}_0 + \overline{\Sigma}_0) + h\overline{b} + \alpha (r + ||w_0||) \right] |||w_1|||$$

$$< t' \beta \frac{(r + ||w_0||)}{r} r \qquad \forall w_1 \in S(w_0, r).$$

Therefore, if we choose t' such that $t'\beta_1 < 1$, (hence, also $t'\beta < 1$), the non-linear operator (5.1) is a contraction from $S(w_0, r)$ into itself and our assertion follows from the contraction mapping theorem. We shall now find an upper bound for ||u(t)||. From (3.2) and Lemmas 4.1-4.4, we obtain the following inequality

$$||u(t)|| \le ||w_0(t)|| + \int_0^t ||z|| ||u(s)|| + \alpha ||u(s)||^2 ds$$
,

where
$$z = [v(\bar{\gamma}_0 + \overline{\Sigma}_0) + h\bar{b}], \|w_0(t)\| \le \|u_0\| + \|v_0\|t, t \in [0, t'].$$

Inequality suggests that we investigate whether or not the integral equation

(5.3)
$$y(t) = ||u_0|| + t||v_0|| + \int_0^t \{zy(s) + \alpha[y(s)]^2\} ds$$

has a continuous non-negative solution. To this end, we differentiate equation (5.3) and we have

(5.4)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = [y(t)]^2 + zy(t) + ||v_0||, \qquad y(0) = ||u_0||.$$

Just as in $[3]_3$, we have that the solution of (5.4)

$$y(t) = \frac{\Delta - z}{2\alpha} + \frac{1}{\varphi(t)},$$

$$\varphi(t) = -\frac{\alpha}{\Delta} \left[\frac{\Delta + (z + 2\alpha \|u_0\|)}{\Delta - (z + 2\alpha \|u_0\|)} \exp\left[-\Delta t\right] + 1 \right], \qquad \Delta = (z - 4\alpha \|v_0\|)^{\frac{1}{2}}$$

is a continuous non-negative and finite function at any $t \in [0, t_1]$, where t_1 is the first positive root of $\varphi(t)$, provided that α is sufficiently close to zero. Consequently, if we choose $t_0 < \min(t', t_1)$ then u(t) and y(t) exist and by applying the successive approximation method of Theorem 5.2 we have

$$||u(t)|| \leq y(t)$$
, $t \in [0, t_0]$.

The author is indebted to prof. A. Belleni Morante for is helpful discussions, comments and suggestions.

Bibliography.

- [1] V. Barbu, Semigrupuri de contractii neliniare ni spatii Banach, Editura Academiei Republicii Socialiste Romania, Bucaresti 1974.
- [2] G. I. Bell and S. Glasstone, Nuclear reactor theory, Van Nostrand Company, New York 1970.
- [3] A. Belleni-Morante: [•], J. Math. Anal. Appl. 30 (1970), 353-374; [•], J. Math. Phys., 11 (1970), 1553-1558; [•], Nucl. Sci. Eng. 59 (1976), 56-58.
- [4] A. Belleni-Morante and R. Farano, SIAM Appl. Math. (to publisher).
- [5] V. Boffi, Fisica del reattore nucleare, Patron, Bologna 1974.
- [6] F. Browder, Ann. of Math. 80 (1974), 485-523.
- [7] G. ERDMANN and J. E. BROUDEAU, Trans. Amer. Nucl. Soc. 13 (1970), 645-646.
- [8] W.L. HENRY, SIAM Appl. Math. 22 (1972), 487-494.
- [9] E. HILLE and R. S. PHILLIPS, Functional analysis and semi-groups, Coll. Am. Math. Society 31 (1965).
- [10] T. Kato: [•]₁ Perturbation theory for linear operators, Springer-Verlag, New York 1966; [•]₂ Proc. Symp. Appl. Math. 17 (1964), 50-67.
- [11] G. E. LADAS and LAKSHMIKANTHAM, Differential equations in abstract spaces, Academic Press, New York-London 1972.

- [12] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698.
- [13] NGUYEN: [•]₁ Nucl. Sci. Eng. 52 (1973), 292-298; [•]₂ Nucl. Sci. Eng. 55 (1974), 307-319.
- [14] B. V. Pao, Arch. Rational Mech. Anal. 50 (1973), 290-301.
- [15] A. SUHADOLC, J. Math. Anal. Appl. 35 (1971), 1-13.
- [16] I. Vidav, J. Math. Anal. Appl. 22 (1968), 144-155.
- [17] G. M. Wing, An introduction to transport theory, John Wiley and Sons, New York 1972.

Sommario.

Facendo uso di alcuni risultati della teoria delle equazioni non lineari di evoluzione negli spazi di Banach, si studia un problema non lineare di trasporto di neutroni.

Si prova l'esistenza e l'unicità di una soluzione u=u(t) di tipo «mild» e quindi si mostra che tale soluzione è anche di tipo «strict».

Infine, si esaminano alcune proprietà della norma $\|u(t)\|$, che hanno interesse per le applicazioni.

Summary.

The object of this paper is to study a nonlinear neutron transport initial-value problem in a suitable Banach space X.

By using some results of the theory of nonlinear evolution equations of hyperbolic type in Banach spaces, we prove the existence and uniqueness of a local «mild solutions» u = u(t) belonging to X and we then show that such a solution is also a «strict solution». Finally, we investigate some properties of ||u(t)|| which are of practical interest.