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R. FArRANO (%)

A quasilinear equation

of hyperbolic type arising from neutron transport. (**)

1. - Introduction.

The mathematical structure of monoenergetic neutron transport initial-
value problems under various boundary conditions has been studied in several
papers (see, for instance, [3],, [3], [16]).

Recently [8] Hendry considered a neutron transport problem in a slab
with moving boundaries; he obtained a formal solution but he did not attempt
an existence proof. The existence of a unique solution has been discussed
in [4]. The original and praectical interest in the problem with moving bound-
aries arose in studies of nuclear reactor aceidents [7].

The approach to the problem is based on gome results for abstract evolu-
tion equations in the Hilbert space L2 and, more generally, in L? spaces for
p>1[15]. However, from a physical point of view, the L' space is more appro-
priate than L7 spaces with p > 1 [13],, [14], (see also section 2).

In this paper, we shall study a more general monoenergetic neutron trasport
initial-value problem (i.e., with moving boundaries and with cross sections

(*) Indirizzo: Istituto Matematico, Universitd di Camerino, 62032 Camerino (Ma-
cerata), Italia.

(**) Work performed under the auspicies of G.N.I.M. (C.N.R.) — Ricevuto: 27-1V-
1976.
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depending on the temperature). Specifically, we consider the following integro-
differential system

1
oN oN v , ,
5 =" %—@Z(w,t, T)N—,Lé w(z, t, T)fN(w,,u,t)dy ,
-1
(1.1) { or S
5 = ML, 1) —T,] + Kz, ¢, T)b(t)fdac’j N’y p'yt) du’
-y —1
; a(t)
0<t<t', o] <a, lml<1, bt) =—,
1

v

with boundary conditions
1.2)  N(—a,pumt)=0 pe(0,1), N(+a,pt)=0 pe(—1,0)
and initial conditions

(1.3) N{w, py 0) = No(z, ) T(z, 0) = To(), o] <ay .

In (1.1)-(1.3), N = N(#, u, t) is the neutron density function, T = T(z,1?)
is the temperature at x and i, a(tf) is a continuously differentiable function
such that 0 < a(0)<a(t)<a, for any t[0, '], and we use standard symbols [2],
[5], [13],, [13],. Following [4], we assume thab

(1.4) 2@, 8, T) = y(w, 1, T) = k(w, ¢, T) =0

for ze[— a,, a(?)] and z e [a(t), a,].
If we suppose that the freed-back due to a variation of temperature is
linear, we have [13];, [13],

(1.5) 2w, t, T) = Zy(z, )(1 + . 0), y(@, t, T) = pyole, )1 4 o, 0)

(1.6) k(z,t, T) = ko2, 1)(1 + a5 0) , T, t) =0z, 0)+1,,

where Xo(@, 1), po(®@, t) and ky(z, t) satisfy (1.4), a;e R, for ¢=1,2,3, and T, is
a suitable reference temperature. T )
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Moreover, we make the following assumption:

a.1) 0< 8z, 1) <8, lz| < a(t), te[0,1],
Sz, 1) =0, r€[— ay, a(t}], zE [a(t), a4];
2.2) for any 1€[0, 7], 8@, f) is continuous with respect to @, a.e. on
[— a1y a5
2.3) Si{x, 1) is continuously differentiable with respect to ¢, uniformly

in », a.e. on [— a;, a;];
a.4) for any te[0, '], 08,/0t is continuous and bounded with respect
to @, a.e. on [— ay, @], with |88,/0t|< 8} ;

where the symbol Sy(x, 1), ¢ =1, 2, 3, denotes Zy(w, 1), yo(z, ) and k,(z, 1) res-
pectively. Due to relations (1.5)-(1.6), system (1.1) ean be put into the form

N

FT AN+ [vpo(@, ) — vZy(w, 1) I] N— 00 yo (@, 1) — oy Zo(w, 1) [N
(1.7) A

a0

5 = b+ Eo(w, 0)0(1) ByN —+ agko(, 1) b(2) OB, N - W(T,— T,) ,

where the operators 4, J and B, are defined in section 2, and where I is the
identity operator.

2. = The mathematical setting.

In order to formulate the system (1.7) together with the boundary and
initial conditions (1.2)-(1.3) as an abstract evolution problem, we put Q, =
=[—a,a], Q.:=[—1,1] and @ =@, XQ,. We denote by X, the Banach
space Ly(@) of all complex valued functions fi(z, u) such that |fa(e, )] is
Lebesgue integrable in @ and by X, the Banach space C[Q,] of continuous
funetions fy(#). The norms in X, and in X, are defined respectively by

If:lli= }l da _Ji [fu(@y p) | dpe [[fll. = max {|f2(w)'1 mte} y hedy, fedX,.

—a;

Then X = X, xX,, with norm

e =Bl plile, 1= [F]ex,
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is a Banach space. We remark that the use of X, is justified by the faet, that
|¥ ], is the total number of neutrons in the slab at the instant ¢ The con-
stants %, and % in the norm (2.1) are used to adjust dimensions, so that |- ||
is proportional to an energy per unit time.

Finally, let ¥ = C([0,¢], X) the Banach space of continuous functions
u: [0,¢]— X equipped with norm |ju]] = sup {[}u(t) I, tefo, t’]}.

We now define the following linear operators:

2.2) 4 =-w%%, D4, ={fe X A fieXs; /i satisfies 1.2)},
R(4,)cX,,
ey I =; [ Aema,  Dw=x, R()CX,,
©4) By = [do [ femde;  DB)=IXi, R(B)CX,,
(2.5)  Byt)fi = vyol@, ) Jf—vZy(@, 1) fr , D(By(t)) = X, R(B,(t)) c X,
2.6)  Bu(t)fr = kolw, 1) b(1) Buf D(B,(#)) = X, R(B,(t))C X,
en 4 =g %] par=puyxx., Ruex,
B, 1 -
ey Bor =g M), pmw-x, RE@)ex,

and nonlinear operator

2.9) F = [vfzocz?o(m, 1) Jfr— voe fo Zol, t)]fl}

oy foBy(t) 1
D(F(t, 1)) = [0, #]1x X, R(F(t, ) c X .

3. - The abstract problem.

Due to (2.2)-(2.9) the system (1.7) with boundary and initial conditions
(1.2)-(1.3) is transformed into the abstract semilinear initial value problem

31) ¥ dult) + BOUW) + Bl u) + 00, m ) =,

di t—»0*
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where u(t) is a transformation from [0, '] into X, the limit and differentiability
are defined in the strong sense, and where

Pl %) )
6($,t) ’ ’ To(w)—Tr ’ ’ Tf"'17r '

In Lemma 4.1 of the section 4, we shall prove that 4 € G(1, 0) that is 4
is the generator of a strongly continuous semigroup of contraction opera-
tors [1], [10];, [11]; therefore, the semilinear evolution equation (3.1) is of
hyperbolic type and it can be formally reduced to the nonlinear integral equa-
tion [10],

u(l) = [ul(z)

(3.2) w(t) == wy(t) + f exp[(t—s)4] {B(s)fu,(s) -+ F(s,u(s))} ds,
where

]
wy(t) = exp[tdlu, -+ [ exp[(t—s)ATv, ds .
1]

In the mathematical theory of semilinear equations of evolution of hyper-
bolic type we have the following results [10],.

If the nonlinear term G(¢, u) = B(t)u(t) + F(t, w(t)) is continuous on
[0, ]1x X to X and uniformly Lipschitz continuous in %, in a neighborhood
of u,€ X, then for any wu,€X, (3.2) has a unique solution we Y. Following
Browder [6], a such solution is said a «mild solution» of (3.1). Moreover,
if G(t, u) has continuous derivatives G, and G,, where G, is the Fréchet deri-
vative [11], then the mild solution is a «strict solution » (i.e. u(?) is continuous
on [0,%'], continuously differentiable on (0,#'] and Aw(?) exists on [0, t']).

Lemmas 4.1-4.6 of section 4 lead to the following Theorem

Theorem 3.1. System (1.7) with boundary and initial conditions (1.2)-(1.3)
has a unique (local in t) mild solution we Y which is also a strict solution.
4. - Properties of the operators.

We now obtain some basic properties of the operators defined in section 2,
which prove the Theorem 3.1.

Lemma 4.1. A is densely defined and dissipative operator with R(I— A) =
=X (i.e. 4€G(1,0)[12]).
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Proof. From [15], [16] and since — hIeB(X,), it follows that D(4) is
dense in X. Following [17], we have that the equation

(I — A)f=g geX, z>0,
has a unique solution fe D(A), that is R(z] — A) = X for any 2> 0.

Moreover, we have
| Bz, A)g] = If] <= Mgl 5

hence, if g = (I—sd)f with fe D(4), we obtain
1 1
i =] 22 (3,4)

which proves that 4 is an dissipative operator.

<lgl = la—sa)f| ,

The following lemmas can easily proved

Lemma 4.2. JeB(X) and |Jhli<|fili; BieB(Xy, Xo) and |Bifile<

<[fil-

Lemma 4.3. 1) By(f) 4s a continuously differentiable mapping (c.d.m.)
from [0, t'] to B(X,) with derivative (in the sense of the norm in B(X,)) given by

d

0 0
3 Bo(t) = v(gtyo(w, 0 —, Zol@, t)I) € B(X,).

ii) By(t) s a c.d.m. from [0,%] to B(X,, X,) with derivative (in the sense
of the norm in B(X,, X,)) given by

d d
. B = (b(t)(ﬁko(x; 1) — b(t) kol t)) B,eB(X,, X;) .

iii) B() 1s a c.d.m. from [0,¢] to B(X) with derivative in the sense of the
norm in B(X) given by
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Proof. i) From assumption a.2) and f; € X it follows that integrals

I 1840, 010§ 1oy )] dud d (1=1,2)

-y

exist. Thus, from assumption «.1) we obtain

(4.1) I Bo(2) fullr < 0(50 + Z0) i falla -

(4.1) with assumption a.3) proves that By(f) is a c.m. from [0, '] to B(X,).
Moreover, given ¢ > 0 and ¢ e [0, #'], we obtain from assumption 2.3) and
Lemma 4.2
Byt + At)— By(t)
RSB <elfil.

] 2
yT fl“”(é‘t Yol®, t)J"aZo(%t)I)h

since

20("”7 t + At) - Zﬂ(my t) 0

Yolw, t+ Aty —yo(a, 1) D
P yT, —‘5;20(90;"')’<51

—_— R
VT Py YolZ, 8)) + v

uniformly in % a.e. on @,, provided that |4t] < 4, where ¢ = d(e,t), does not
depend on z. Finally, we obtain from assumption a.1) and from Lemma 4.2

1 <(pyF 4 23(.)"]‘1”1 .

d
(4.2) H 5 B
ii) Can be proved in an analogous way and, in particular, we have

< (b 4-Fob*) | fa 1

2

(4.3) “Bl(t)fl”2<]7;05”f1“1 s H (% B, ()f,

where b = max b(t), b* =max |b(t)|, t<[0,'].
jii) Follows from i) and ii) and we have

(4.4) IB@) ] <[0(F + Zp) — hB]- |If]

.

Lemma 4.4. The nonlinear operator F(t,f) is a c.m. on [0,#'1XX to X
and locally Lipschitz continuous in f.

17
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Proof. By putting

e e B G P T R P

we then have

B(t, u) = voy Zo(@, £) Pof) + votayo(w, 1) Fo(f) -+ b(t) Ko, ) Fa(f) ¢y -

By taking in account that

17:(f)— Filg) | <% C[Ife— gelo(Ifla— Ngulla) + 1a— gula(Welle + gle)]

where C=F%k, if i=1,2, and =5 if {=3. Thus, by using Lemma 4.2,
Lemma 4.3 and assumption a.l), we obtain after some manipulations

(4.5) 12, 1) —F o)l <e(IF] + lg1) IF = g1

and, since F(¢,0) =0,
(4.6) 17 Hil<e|fl®,

where

ot:-%— ”(I“1l20+l°‘2!)70)+—b‘!“3‘ .
h

Given f,e X, if we consider the’ sphere
S(fo, 1) = {f€ X |fo—Fl <7}
we then obtain ﬁbm (4.5) and (4.6):
(4.7) 1P, H— P, o) <2M[f—gl, [P HI<Mf]e,

for every f, geS(f,, 7) since |f| and |g| are not larger than M /a = (r =+ 1foll)-
Finally, by using assumption a.l), we obtain

|2+ 4, f + Af) — P2, )] <
<MmWMMZMJ+Aﬂ—ZMJH%EU+AMHWEU+Aﬁ~FMW2]+
+ v]ot l[max lyo(@, t+ At)y—yo(@, )| | Fo(f 4+ AN + | Falf + 4F) — Fof) [ 76] +

+ Jog | [max [b(t+ At) kol 8-+ AT) — b()ko(2, t) |-
NS + AN + | Faf + AF) — Fo(f)|0ko]
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and the continuity of F(t,f) follows from assumption a.3), (4£.5) and (4.6)
which are valid also for [#,(f)— F:(g)].
Further properties of F(t, f} are stated in the following

Lemma 4.5. I'(t,f) has continuous derivatives I, and F, where I, means
the Fréchet derivative at any fe X [11].

Proof. In fact, after a few manipulations we obtain

B, f+9)— F@, ) = I, (t) g+ wit, g),
where

(1) = [— v Zo(®, 8) oufol + vyo(@, t)ctofod —vZy (@, t) o fy I + Jfl] [gl]

oy f, By(t) o Bi(1) f [/

is a linear operator and where
- 2 W s T 2 8 oJ
w(t, g) = [ vty 2By 1)1 G -+ Ve Yo(y 1) G 91]

92 Ba(t) 91

is such that [w(, )] <2«|g}* Our assertion then follows from assumptions
a.4) and Lemma 4.3.
Combining, Lemma 4.4 and Lemma 4.5 with iii) of Lemma 4.3 we obtain

Lemma 4.6. G, f)=B@)f+F,f) is ¢ cm. on [0,¢]xXX to X and
locally Iipschitz continuous in f, has continuwous derivatives G, and G,. We
also have '

(8.5) G, =5BWI+TF.,  G=BWO+TF,,
(9) 60, 1) — 60, (oG + T+ W5+ 2M)f—g]  f,9€ 500, 7).

5. = An upper bound for 7' and Ju@)| .

The goal of the last part of this paper is to evaluate an upper bound for ¢’
and to find an upper bound for the continuous and non-negative function
lu(®)]. To this purpose we define the following operator

(5.1) Plw) = w,(t) = Oj‘ exp [(t—s) A1{B(s)w(s) + F(s, w(s))} ds

D(P) = 8wy, r) ={we X:|lwy—w|l<r}c ¥ .
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Theorem 3.1. If we choose t'<<fB* where By = f(r+ [|woll)/r and p =
= [0(g -+ Zp) + hb + 2a(r + [[w, [1)], then the equation P(u)=wu has a unique
solution we S(wy, ¥) such that [Ju,— ul|] =0 as n-> oo, where wy == Wy, Wpsy =

= P{u,), n=0,1,2, ...

Proof. Let w;eS(w,,7), 1=1,2. We have [|lw,||<(r+ |lw,]|) and con-
sequently

(5.2)  sup {|Pw.)(t) — Plw)(®)], t€ [0, ¢'T} = || P(ws) — Plw,) || <t Bllwy— we |l ,

where we used Lemma 4.3 and Lemma 4.4. In an analogous way, we have

(5.2y NP (wy) — ol < ¢ [0(Fo + o) + Bb 4 el +- o[ )] lfeos |

<t'p w 7 Y, € S(w,, 7).

Therefore, if we choose t' such that #'f;<<1, (hence, also ¢'f<C 1), the non-
linear operator (5.1) is a contraction from S(w,, 7) into itself and our asser-
tion follows from the contraction mapping theorem. We shall now find an
upper bound for |u(f)]. From (3.2) and Lemmas 4.1-4.4, we obtain the fol-
lowing inequality

w0 + § @]+ ou)] as

where 2= [0(Fs + Zo) -+ 18], ] < ol + [volt, 1€ 0, ¢1.

Inequality suggests that we investigate whether or not the integral equa-
tion '

5:3) )= o] + el + § {euts) + ofyto)}}

has a continuous non-negative solution. To this end, we differentiate equa-
tion (5.3) and we have :

(5.4 Y =P O+ o], 9(0) = -
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Just as in [3];, we have that the solution of (5.4)

i [A + (24 2xfu)

7O == a2l

: expl—a+1], A= (s—dafo,])’

is a continuous non-negative and finite function at any ¢ &[0, t,], where 1, is
the first positive root of ¢(f), provided that « is sufficiently close to zero.
Consequently, if we choose #,<<min (¢, ¢,) then w() and y(f) exist and by
applying the successive approximation method of Theorem 5.2 we have

le ] <@ , te[0, %] .

The author is indebted to prof. A. Belleni Morante for is helpful discus-
sions, comments and suggestions.
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Sommario.

Facendo uso di aleuni risuliati della teoria delle equazioni non lineari di evoluzione
negli spazi di Banach, si studio un problema non lineare di trasporto di neutroni.

Si prova esistenza e Uunicita di wna soluzione w = w(t) di tipo «mild» e quindi st
mostra che tale soluzione & anche di tipo « strict ».

Infine, st esaminano alcune proprieta della norma |u(t)|, che hanno interesse per le

applicaziond.

Summanry.

The object of this paper is to study a nonlinear neutron transport initial-value problem
n a suitable Banach space X.

By using some vesults of the theory of nonlinear evolution equations of hyperbolic type
i Banach spaces, we prove the ewistence and uniqueness of a local « mild solutions »
u = u(t) belonging to X and we then show that such a solution is also a « strict solution ».
Trinally, we investigate some properties of [[u(t)| which are of practical interest.



