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A, BELLENI-MORANTE and A, PAGLIARINI (%)

A rigorous derivation of the reactor kinetics equation

from the Chapman - Kolmogorov system. (**)

1. - Introduction.

In a recent paper [1], the Chapman-Kolmogorov system for neutron popu-
lation in a multiplying assembly at zero power was studied by using the
theory of semigroups. Existence and uniqueness was proved of a positive
and norm-invariant solution belonging to the Banach space of summable
sequences. Moreover, a procedure was indicated to derive rigorously the equa-
tion for the first moment of the neutron population.

In Sect. 2 of this paper, we summarize some basic results obtained in [1].
Sect. 3 is devoted to reformulate the problems and the procedures sketched
in Sect. 7 of [1] in a simpler and more compact way. Finally, in Sect. 4 and 5,
we present in detail a rigorous derivation of the equation for the first moment
from the Chapman-Kolmogorov system. Such a derivation involves the study
of a suitable « approximate » solution whose properties can be profitably used
to obtain the corresponding properties of the « exact » solution (see Sect. 4).

Following [2] (see also refs. [3] to [11]), the Chapman-Kolmogorov system
under consideration has the form i

% Pn, 1) = — pnP(n, )+ p S b(s)n + 1 — ) Pln +1—s, 2) -

8=0

~+ q[P(n—1,t)— P(n,1)], t>0,n=0,1,...,

(*) Indirizzo degli Autori: A. BELLENI-MORANTE, Istituto di Matematica Appli-
cata, Facoltd di Ingegneria, V.le Morgagni 44, Firenze, Italia; A. PaGriariNi, Istituto
di Meccanica Razionale, Universitd di Bari, Via Nicolai 2, Bari, Italia.

{(**) Work performed under the auspices of G.N.F.M. (C.N.R.) - Ricevuto: 27-IV-
1976.
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where :
P(—1,t)=0;

P(n,t) = the probability that » neutrons are in the multiplying assembly at
the instant 7;

p =1/l, where [ is the average lifetime;

b(s), s = 0,1, ..., = the probability that s neutrons are emitited if one neutron
is absorbed;

0<b(s)<1, 3b(s)=1;

§==0
¢ = the probability per unit time interval that a non-fission source emits a
neutron.

The preceding system must be supplemented with a initial condition of
the form

P(n, 0) = Py(n), n=0,1,.., where 0 Py(n)<1, > Py(n)=1.

n=0

2. - Mathematical setting.

Following [1], let X be the Banach space of all summable sequences of
real numbers

X = {f = {f(’n)’ n=0,1, }’ ”f“ = i [f(n)| < °°}

n=0
and let X, be the positive cone of X
X, ={f:feX; fn)>0,n=0,1,..}.
Let us also define the following operators

[4f], = —pnf(n)+p i bsn+1—s)fln+1—s) (n=0,1,...)

8=0

) © :
D(4)={f:feX; gol[fif]nl< o0} ;5
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@ [Hfl=pnf) (n=0,1,.), DE) =D={:feX; 3 n|jn)|< oo},

n=0

(3) [Kfl,=p Zﬁb(s)(n—}—l —8)fn-+1—s) (n=0,1,...), D(K)=D(H)= D,

(4) [8f1. = qf(n—1) (n=1,2,..), [8fle=0, DW= 2%,

where [Af], indicates the (n -+ 1)-th component of A7 and where D(4) is the
domain of A.

By using definitions (1) and (4), the abstract version of the stochastic model
for neutron multiplication of Sect. 1 can be written as follows

4 ic(t) = (4 4+ 8—qgDu(t), +>0; Hm Ju(t) —ue] =0.

di [

(5)
In system (5), u(t)={P(n,t),n=20,1,..} is a map from [0, + co) into X,
d/dt is a strong derivative [12], and u, = {u,(n) = Py(n),n =0, 1, ..}.

We have [1], [12]

Lemma 1. Lel
(6) G, =—H-+rK, D@E)y=D,

where v is a real parameter, such that 0<r<<1. Then, G,€ %(1,0), ’([12]2,
D. 485) and the semigroup Z.(t) = exp (1G,) maps X, into itself.

Moreover, let

Q) Z(t)f = lim Z,(8)f , feX, t>0.

r—>1_
Then:

(@) relation (7) holds uniformly with respect to t in each finite interval [0,1];
(b) Z(t) s a semigroup such that |Z(t)| <1 and Z(t)[ X, Jc X, at any 1>0;
(¢) if @ is the generator of Z(t), then Ge %(1,0) and (— H + K)cGcC A4;
(@) 120f] = [exp @) 1] = |1, Ve X,, 1>0.

Lemma 2. S[X, ]cX,, |87l =qlfl, Ve X, |8] = ¢ As a consequence

®) 1=6+8—qeg(,0),

16




242 A. BELLENI-MORANTE and A. PAGLIARINI [4]
(9) ][exp (tl)fH = ”f” y VieX,, t>0,
where the semigroup exp (ty) = exp (— qt) exp [H(G + S)] maps X, into iiself.

Lemma 3. The initial-value problem

(10) Edtu(t) = yu(t) (1>0), Iim u(t) = u,

t—0,

admits a unique continuous and differentiable solution

(11) ult) = exp (t7)n,  (10),

provided that w,e D(G) = D(y). Moreover,

(12) w(t)e D.(G)= DG N X, , lu@)] =1, V>0

if uoe DL (G) and |u,| =1. =

Remark 1. The preceding lemmas summarize most of the results ob-
tained in [1] by using lemmas and theorems of [12].

Remark 2. Due to (¢) of Lemma 1, D= D(— H + K)c D(G)c D(4).
Hence, u(f)e D(4), Au(t) = Gu(t) at any >0 and the w(f) given by (11) also
satisfies the « physical» system (5). We also note that the assumptions of
Lemma 3 are satisfied if in particular w,e D, =D N X, and |u,]| = 1.

3. = Further preliminary remarks.

If we multiply both sides of the (n 4 2)-th component of the two (5) by
(n 4+ 1) and if we put

{(13) v(n, 1) = (0 + 1) un + 1, 1) (n=0,1,..),

we then obtain

(14) S0l = (4 + S—gD@) + (Bi—pIh(@)+gut) (>0, limol)=o,,

t—>0t
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where vy(n) = (1 - 1)uy{n + 1) and where

n-+1
(15) [Bifln=p 2 sb(s)f(n -+ 1 —5) (n=0,1,..).

8=0

Remark 3. System (14) is a first step to derive an equation for the
first moment of the neutron population {(n)(t), where

(16) () = g (n -+ Lun + 1, 1)

(see [11, [2]).

Remark 4. System (14) was derived from (5) in a heuristic way. In
fact, (14) formally follows from (5) by applying to both sides of the two (5)
the unbounded operator I, where [Ffl, = (n + 1)f(n -~ 1). The rigorous justi-
fication of system (14) is one of the aims of this paper.

It follows from definitions (15), [1],

Lemma 4. Bye#B(X), B[X,]cX,, |B.f| =pi|f|, VieX,, where # =

o

= 231)(3) is the mean number of neutrons emitled if one neutron is absorbed.
=0

Moreover,

(17) A=y+ (By—pl)= (@ +S—qI)+ (B,—pl)e ?(1, ("7“1)/0 ’

(18) lexp tid)f} = exp[“7* il vrex,,

where the semigroup exp [tA] maps X, into ilself. m
We now consider the following initial-value problem

(19) o) = Ao+ qut)  (>0),  lme()—u,,

120,

where «() is given by (11). Due to (17), the solution of (19) has the form
t

(20) o(t) = exp [tA]v, + ¢ [exp [t —1")AJu(t') &',
o

provided that v,€ D(A) = D(y) = D(G) ([12],, p. 486).
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Under the assumptions of Lemma 3 (see relations (12)) and if v,e D (@),
(20) shows that v(f) e D, (G) at any t>0. Moreover, we obtain from (20)

1)1 = exp | 7] e+ foxp [ o1 av
because of (18). Hence,

7—1

@l +q¢ (#>0), lim [o(@)]| = [v] .

l =04

(21) 2 ol =

The first of (21) has the standard form of the nuclear reactor kinetics equa-
tion [2].
‘We may summarize the preceding results as follows.

Theorem 1. If u,e D (G) with |u,] =1 and if v,€ D (G), we then have

(a) the solution w(t) of (10) is such that wu(t)e D (&), |u(@)] =1 and
Ault) = Gu(t) at any t>0;

(b) the solution v(t) of (19) is such that v(t)e D (G) and Av(t) = Go(t) at
any t=0 (hence, v(t) also satisfies (14));

() Jo@)] = iv(n, t) satisfies system (21). ®&

n=0

Remark 5. Theorem 1 does not imply that relation (13) is true and
that, consequently, [v(t)] = (n>(¢). Hence, we can not infer that (n)(t) satis-
fies system (21). Relation (13) must be proved «a posteriori» (see Sect. 4
and 5).

4. = The « approximate » solutions u,(¢) and v,(z) .

Let us consider the following initial-value problems

d
(22) (’l‘tur(t) = % %(t) (t>0), Lim w,(8) = u, ,
=04
d
23) Lol =400+ qul)  @>0),  lmv@)—o,,
t—>o%
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where we assume that both %, and v, belong to D = D(H) = D(G,) and where
(24) Xr:Gr“ll“S""qI, Ar:Zr_g‘Bl'—ply D(Zr)::D(Ar):D

Remark 6. As it will be proved in the sequel, %, and v, «approximate »
% and v if r is close to 1 (compare (22) with (10) and (23) with (20)).

‘We have

Lemma 5. y.€ %(1,0), 4,€ (1, (# —1)/I) and both the semigroups exp [tx.]
and exp [tA,] map X, into itself. =&

In fact, G, ¥(1,0) and |§| = ¢. Hence ([12],, p. 493), G, -8 € %(1, g).
On the other hand

(25) exp [1y,] = exp [— qt] exp [{(G, 4 8)] ,

since qI commutes with (G, 8). We conclude that y,€ %(1,0). Moreover,
since exp [1G, ][X,Jc X, (see Lemma 1) and S[X,]c X, (see Lemma 2), rela-
tion (25) shows that exp [ty,] maps X, into itself ([12],, p. 495). The
operator s, can be dealt with in an anologous way. @

The following theorem is a direct consequence of Lemma 5.
Theorem 2. If u, and v, both belong to D, then

(26) U (1) = exp [ty ] upe D, Vi=0,
t .
(27) 0,(t) = exp [14,]v, + gfexp [(t—1t') A,]u,(t') &' e D, , >0,
0

for any ref[0,1). =
The importance of u.(f) and of v,(t) is due to the fact that «.(2) and ».()
« approximate » u(t) and v(t) in the following sense.

Theorem 3. If u, and v, belong to D, then

(28) lim ,(t) = u(?) lim v,(¢) = v(t)

7>l r—>l_
wniformly with respect to t in each finite interval [0,%]. ®

Theorem 3 is a direct consequence of the following Lemma 6 with € =
=8 —g¢l and with ¢ =8 —¢I + B;— pI.
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Lemma 6. If Ce#(X) ([12],, p. 149), then

(29) lim exp [t(G, + O)]f = exp [1(G + O)]f, Viex,

wniformly with respect to ¢ in each finile interval [0,7). @

Lemma 6 follows from (7) and from Theorem 2.16 of [12], (p. 502),
(see also [13], Theorem 2). =

Remark 7. The approximate solution u.(f) can be profitably used to
derive specific properties of the exact solution «(f). This is due to the fact
that u,(t)e D, =DN X, at any t>0 (see (26)) where the structure of D is
completely known. On the other hand, u(t)e D (G)=D(G)N X at any >0
(see (12)) and we only know that D(G) satisfies the relation D c D(G)c D(4).

5. - u(ti, v (t) and {(n) (1) .

‘We shall now exploit Theorem 3 to show that «(f) and »(f) (see Theorem 1)
satisfy the relation

(30) Jo(t) = Yul(t), Vi=0,

where

(1)  [Jfla=fm)/(n +1), [XYfl.=Ffn+1) (n=0,1,..), D(J)=D(Y) =X,
and where it follows directly from definition (31) that

(32) JeB(X), YezX), |JI<1, [¥[=1,

(33) J[DlcD, Y[D]cD.

Remark 8. Relation (30) is equivalent to (13). Hence, if (30) is true,
(16) shows that [o(1)] = (»)(t). Consequently, <n>(t) satisfies system (21) and
the nuclear reactor kinetics equation is a rigorous consequence of the Chapman-
Kolmogorov system.

In order to prove (30), we introduce the following maps from [0, + o0]

to X

(34) w(t) = Jo(t) — Yul(t), w,(t) = Jo.(t) — Yu,(t).
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Due to (32), we have from (28) and from (34)

(35) lim w,(t) = w(t)

1.

uniformly with vespect to ¢e [0, ], provided that «, and v, belong to D,
(see Theorem 3).
We shall now derive an equation whieh gives the evolution of w,({).
Since J(D)c D and Y[D]c D (see (33)), we have for any fe D and for
any ge X

YHf=HYf+pXf, YKf=KYf+ B, Xf
(36)
JHf = HJf, JKf = KJf 4 (Bo— By)Jf — J (B, — By)JT,
Y8g=8Yg=qly, JS8g = S8Jg — JSJg
(37)
JB,g = B,Jg + J(B,— B,)Jyg,
where
n+1
[Bogla=p 2 b(s)g(n +1—5), D(B)) =X, |Bo] <p
8=0
(38)
n41
[Bogls=p 2 s2b(s)g(n +1—3s), DB, =X,
80
(39) [B:]| <pl#*]1=p 2 s2b(s) .
8==0

By using relations (36) and (37) and by taking into account that both Y
and J belong to #(X), we obtain from (22), (23) and from the second of (34)

d
40) 5w () = (z-+ rBy—pI —JS)w.(t) +

+ (L —#)[By + J(B,— B,)]Jv,(t) (t>0), lim w, () =0 .

t—0,

We note that the second of (40) follows from the assumption Jv, = Yu,
(see (14) of Sect. 3). o




248 A. BELLENI-MORANTE and A. PAGLIARINI [10]
We have

Lemma 7. (x,+rB,—pl—J8)e¥%Q1,q), Yre[0,1). =
In fact,

(41) exp [t(gr + rBo— pI — J8)] = exp [— pt] exp [((y, + 1By — J8)],

where (y, + »By— pIl —J8)e ¥(1, rp + ¢) since y,.€ (1, 0) (see Lemma 5) and
| Bo|| <rp, |JS]|<|S]| =¢. Relation (41) then shows that

(e +1Bo—JS—p)e 91, q— L —r)p)c %, q). &

Due to Lemma 7, we have from (40)

wy(t) = (L—7) fexp [(t— 1) (o - rBy—pI — TS)IB, -+ T (By— By)} Jor(t') dt
and also

)  lwol< <1~r)géxp [q(t— )BT (Bi— By ot at,

where, due to (27) and to Lemma 5,
43) foue] <exp [“5¢ | onl 4 ¢ [exp [P =) bl

Inequalities (42) and (43) imply that

(44) lim w,(¢) = 0
r~>1.
uniformly with respect to ¢ e [0, 7].
Relation (30) is a consequence of (35) and of (44).
We may summarize the preceding results as follows.

Main Theorem. If uoeD,, v,€D,, |u] =1 and if Jv,= Yu,, we have
at any >0

(a) u(@)eD (@), |u®)] =1, Au(t) = Gu(t), where u(t) is the solution of (10);
(b) v{t)e D (@), Av(t) = Go(t), where v(t) is the solution of (19);
() Jo(t) = Yult).
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Moreover, ||o(t)|| satisfies system (21) and

o) = 5: (n+Dau@ -+ 1,8 = nd@E) .

n=0

‘We conclude that the Chapman-Kolmogorov system (5) admits a solution
u(t) = {u(n, t), n =0, 1, ...} such that the first moment of the neutron popula-
tion (16) exists and it satisfies the nuclear reactor system

Smn=""w0+g >0, lim (n>(0) = i = Il
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Summary.

We prove that the kinetic equation for the first moment of the neutron population in
a multiplying assembly can be derived from the Chapman-Kolmogorov equations in
a rigorous way. The proof involves o detailed study of a suitable approwimate soluiion
of the Chapman-Kolmogorov system, whose properties can be profitably used io
obtain the corresponding properties of the exact solution.

Sunto.

8i prova che Uequazione, che regola Uevoluzione del momento di ordine uno della popo-
lazione newtronica in un mezzo moltiplicante, pud essere ottenuia in modo rigoroso dal
sistema Chapman-Kolmogorov. La dimostrazione si fonda sullo studio di wna oppor-
tuna soluzione approssimata del sistema di Chapman-Kolmogorov, le propriete della
quale possono essere sfruitate per ricavare le corrispondenti proprietc della soluzione esalia.



