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The brachistochronic motion

of a material point on surface. (**)

1. - Introduction.

In present time there is an increasing gcientific interest in problems involv-
ing the optimization of mechanical systems during the motion, although this
is in fact a very old problem. Indeed, John Bernoulli (1696) first formulated
and solved a problem of this kind, the so called brachistochrone problem:

Suppose that in a vertical plane two points 4 and B are given. We wish
to determine the shape of a smooth tube joining 4 and B, and such that a mass
point M sliding in the tube under influence of gravity, and starting from A
with a given speed, shall reach B in the shortest possible time.

The Bernoulli’s brachistochrone problem have been generalized, for the
holonomic and nonholonomic mechanical systems of n degrees of freedom, by
Pennachietti [1], Me Connell [2] and Djukic [7]. Also, there exist a group of
solved particular brachistochrone problems as: the brachistochrone with dry
frietion [3], brachistochrone in a resisting medium [6] (p. 241) and [5] and bra-
chistochrone in a central force field [4]. ]

In this Note we will consider the brachistochrone motion of a particle on
a smooth surface under the influence of gravity. The results of the papers [1], [2]
and [7] will be slightly modified and used for solving the two particular problems.

In this paper the summation convention will be observed. Small italic
indices imply a range of values 1, 2 and 3.

(*) Indirizzo: Faculty of Technical Sciences, University of Novi Sad, 21000 Novi
Sad, Yugoslavia.
(**) Ricevuto: 4-XI1-1975.
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2. = Analysis.

Let us consider the motion of a particle with coordinates ¢, whose kinetic
energy is given by the equation

(1) T = g0 q'¢)2

¢* being the derivative of ¢' with respect to time ¢ and ¢,; being a funetion of
the ¢’s only. The particle is acted upon by a conservative field of forece of po-
tential energy m:(q?). The particle is free to move on a smooth surface, whose
equation is given by

2) F(g) =0.
During any motion of the particle the energy equation

(3) ‘ T4+a=h,

where k is a constant, is valid.

Suppose that on the surface (2) two points A and B are given. We wish
to determine the shape of a smooth tube joining 4 and B, which is situated on
the surface (2), and such that a particle M sliding in the tube under the influence
of force of potential =, and starting from A with a given speed, shall reach
B in the shortest possible time, that is, for a minimal value of the functional

(4) I=[dt.

0

Solving (1) and (3) with respect to df, and substituting this result into (4) we
obtain the problem of minimizing the following functional

(5) I= [ Tiat,

0

subject to the holonomic constraint (2), where

e o Tt Y
(6) T (q 79)——@
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and where T, =1 during the motion. The variational problem is equivalent
to the minimization of a new functional

) 1= [, 4P AP},

where the 1 is Lagrange’s multiplier.

In brachistochronic motion the first variation of (7), where the terminal
time 7 is not specified, must be zero. This condition, 6I* = 0,together with
8q'(0) = 0, dg’(7) = 0, di(7) % 0 and (1) yields (for more details see [6] p. 222)

a 8T, oT, oF
(®) T e
Hence, we have the following theorem:

Brachistochronic motion, with constant energy (3) of a material point on
a smooth surface (2) is described by the differential equations (8) and the
algebraic equation (2).

Six constants of integration of the system (8) and (2) and the terminal
time 7 of the brachistochronic motion may be found from the six equations

(9) ¢O0)=¢°, ¢x)=q",

and the equation 7,= 1 during the motion. Here ¢* and ¢?* are the coordinates
of the partiele at initial and terminal time. These quantities are satisfying
the surface equation (2) identically.

3. - Brachistochronic motion of a particle on a sphere.

Let us consider brachistochronic motion of a material point of unit mass
in a smooth tube, which is situated on a sphere’s surface, under the influence
of gravity. In this case the kinetic and potential energy are

(10) T—}(*+ o0+ #), m=—gr,

where ¢ is the acceleration of gravity, g, 0 and z are cylindrical coordinates
of the point, where z-axis is oriented vertically downward and where the origin
is situated in the sphere’s center. The equation of the surface (2) is

(11) F=o*+22—a?=0,

where a is the radius of sphere.
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Substituting (10), (11) and (6) into (8) we obtain the following differential
equations

af ¢ 4
(12) at \ 1+ ge T htgr 2
d z g
(13) de (h -+ gz) + I+ gz 42
d 020 —0
(14) at\htgs)

Integrating the equation (14) we have
(15) 020 = ¢ (h - g2), ¢, = const.,

and combining this result with (10), (11) and (3) yields

(16) a*g®=f(2),

where

a7 f(2) = (b + ga)[2(a® — 22) — ¢} (h + g2)] .

The polynomial f(z) is negative for #= — a and -+ a, positive for z = — oo,

and negative for z = co. From (16), it is obvious that f(z) must be equal or
greater from zero during the motion. Therefore the polynomial f(2) has the form

(18) @) =— glz— a)(z— p)(z— ),

where its roots are satisfying — oo <y<—a<f<a<a< co. Hence, it is
evident that, during the motion, # is between the values B and a, i.e.

(19) f<e<a.

Combining now (16), (18) and (19) we have the result

Valo —
(20) ~ﬂ%lh+%=ﬁmm,
where
(21) k= g——z——i>0, #==o— (@—f)sin’g, ¢, = const. ,
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and where F(p, k) is [8] the elliptic integral of the first order. Substituting
(16), (18), (19) and (21) into (15) we obtain complet solution of the problem

1 [, hlg—a f—a
(22) 6_1 0970+03: a+“7t(<]?7a+a,k)+

hig + -
-+ el an((p, :._,i’ k), ¢; = const.,

a— o

where n(p, n, k) is [8] the elliptic integral of the third order.

4. - Brachistochronic motion of a particle on the parabeloid.

Let us consider the brachistochronic motion of a particle of unit mass on
the paraboloid, whose equation is

(23) F=p2—2qz=0,

where a is a counstant, under the influence of gravity.
In this case the kinetic and potential energy of the particle are

(24) T=}@+ o0 +&), m=gz,

where p, 6 and z are the cylindrical coordinates of the point. Hence, the dif-
ferential equation (8) of the brachistochronic motion are

cd [ o2 0: d 0 o002 — 4ol

dt\bh—ge) — At\n—gz)  h—gs °
(25) _

d P4 g

dt (h—gz) T h—gz 4la .

From the first equation we have immediately
(26) 020 = ¢,(h— g2), ¢ = const.

and combining this result with (23), (24) and (3) the following equation

(27) (z—}—g) 2 = (h-—gz)[2z——§(h—gz)].
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Solution to this equation is given by

Vi —1

o

(28) vt = ¢, — kI (oc, ) ) ¢, == const. ,

where H(x, n) is [8] the elliptic integral of the second order, and

: . I cos g h ay a
(29) o= are Slnm, 2 = —g—_.|—~:): S111~(p—-—2~,
2 2ghk?

(80) M=l o a2(h +ga2)]’ | @2+ ag){(2h— ag(i? — 1)I(F — 1)}’

where k2>1 for h> 0.
Using (26), (30) we obtain solution for the coordinate 0 in the form

31 0 2h 7 VEiE—1
(31) e +03“M2h+ag % k +
ag 2h 4 ag V2 —1 VEE—1
) g A yoi
- 217 (“’ 2hk? (k= — 1), A + % % ) )
where ¢; = const. and
2ah~/g
2 = —— "
(32) # [2h— ag(k® — 1)1V 2h + ag
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Abstract.

The solutions for the brachistochronic motion of a material point under the influence

of gravity on the smooth sphere and paraboloid are presented.







