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The algebra of certain formal power series. (*¥)

1. - Introduction.

Formal power series with coefficients over a ring, and particularly those
with coefficients over a commutative ring, oceur in many problems in number
theory, algebra and analysis, and for this reason have been extensively
investigated (see Ch.1 of [2], Ch. 7 of [20], [8], [9],[6] and [13] and its associa-
ted references). In this paper we show by use of quite elementary methods
that for various types of ring R the system P{R} of formal power series with
coefficients over R shares many of the properties of R.

2. = Formal power series with coeflicients over a distributive ring.

Notation 1. The symbol A= R is used to indicate that an accompanying
statement holds for every element A of a prescribed mathematical system R; the
symbols A, B=R, A, B, C =R are used analogously.

Definition 1. A distributive ring R is an additive abelian group for
which multiplication having a two sided distribution property with respect to ad-
dition is also defined: we have AB -+ AC=AB+ C), BA+CA=(B+C)4
(4, B, C = R).

(*) Indirizzo: Burnside Hall, McGill University, Montreal, Quebec, Canada.
(**) Ricevuto: 28-VIII-1974.
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Definition 2. A formal power series with coefficients over a distributive
ring R is a series of the form

A(R) = pfa; 4,2} = EA,, 2,

y=aq

where a (—oo<a<<oo) is an integer, A,eR (v=a,a+1,...) and z is
undefined. The two power series A(z) and A'(z) = p{a’; A, |2} where o' <a and
Ay =0 p=a,a' +1,..., a— 1), A, =4, (v=a,a+1,...) are not considered
to be distinct. :

If B(z) = p{b; B:|e}, Cle) = p{e; Ov|2}, then A(z) = B(z) + C(2) is defined by
selting

_B, (b<<e)

Ay,=
"0, 650

y=a,a+1,..,a—1), Ay=B,+C (v=a'yd+1,..),

where a =min (b, ¢), ¢’ =max (b, ¢). Sublraction of formal power series is de-
fined in the same way.
A(z) = B(2)C(2) is defined by the formulae a=1b - ¢,

Aa+r = sz.{.r.—v Cc+1' (7' = 07 17 ) -

v=0

Notation 2. We make consistent use of the series A(z), B(z), C(z) of
Definition 2 and tacitly assume that they have the form therein given.

Notation 3. The system of all possible formal power series with coeffi-
cients over a distributive ring R as described in Definition 2 (for which addition,
subtraction and multiplication are as preseribed in that definition) is denoted by
P{R}. The zero power series A(z) for which Ay=0 (v=a,a-+1,...) is de-
noted by O(z).

According to the above definition, a reference to a power series A(z) is also
a reference to any one of a number of series belonging to an equivalence class
defined by A(2); all nonzero series of the same class have a unique represen-
tative A(z) having a canonical form in which 4,740. This greatly facilitates
the definition of operations upon such series, although the results of this paper
can also be derived by dealing only with canonical series and associating with
each operation a process of reduection to cancnical form. Formulae such as
those of Definition 2 used to define addition and multiplication mean only that
given a sufficiently large numer of coefficients of the series B(z), C(z) an arbi-
trarily large number of those of A(z) can be derived. Any relationship between
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formal power series is a system of relationships between sets of coefficients.
The variable z is introduced merely to motivate the caleulus of formal power
series. Questions of convergence are not considered.

The following elementary results will be used in the proofs of the main
theorems to be given later.

Lemma 1. Let @(C,..., B, A) be a product formed from the n numbers
(n <o) 0, ..., By A and bracketed in a prescribed order, and let C(2), ..., B(),
A(=) be formal power series with cocfficients over a distributive ring; then

@

(1) P(C(2), .y B), A(2)) = 3 Gy 240t ¥otmn

V= /]
where

vy s

) G=3 . S 3 Py s Bogrsy Aus)  a=0,1,..);

”n-l =0 py==0 ;=0

furthermore, the expression ¢{C, 4 s ey Boyr oy Aays)) occurring on the right
hand side of this relationship may be replaced by a similar expression in which
the symbols C,, ..., By, A, are retained in the same order but in which the partial
suffices vp—vy_1, ..., va— w1, v, are subjected to a fized permutation.

Proof. From the formula

B@)A@) = 3 { 3 Bus s Aoy}t
Vg2 O V=0

we see that formula (1) is correct when ¢(C, ..., B, 4) is a simple product of
two numbers. Any compound product of the type under consideration involving
r terms can be expressed as the simple product of two compound products
of ¢>1 and j>1 terms respectively

(0, ..., B, 4) = (0, ..., B, A" (0", ..., B, A) ’

in which i<r—1, j<r—1. Assuming formula (1) to hold for the products
o' and ¢” we have

‘P(G(z), ey B(2), A(z)) =

T

G, oot +8bal o .. pbpatr ,

I
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where (r =0, 1, ...)

r r—v; T s , , ,
G' = z Z D'“ z Z V4 (Cc-i-f—"j—ri_;u ceey Bb’-{-‘rg———'rl’ A a’+1,)}.
Vim0 Ty = 7,520  T,=0
¥
.{ Z E z QPU(O”c”+l SRS Bb+"z'-”x’ ‘Aa+”1)}
v,_1=0 vp=0 =0
r r—y; 75 T2 v; vy ¥z
=2 2 2 Z 2.2 2
1=

vy=0 Ty 0 Ty=0  T;=0 v,_1=0 Vo= 0 p3=0

' : ’ I "
{(p (00+r—”]~—fi_17 ceey B b -1y ) 4 a’ +1,)(p (C L2 2 IR B Bb+"g—-—"17 'A“-f-”;)} :

We now change to a new system of suffices obtained by preserving the set
V1, Vo, ..., ¥; and thereafter adopting the substitutions n=v;,—¥; T.=
= Vige— Vigry eevy Tia— Tia=Vipja— Vigj oy = Vi~ Tia=Vii— Vigja- As
may easily be verified, we then have » =, ; and find that formula (1) with
n replaced by # holds true. The first result of the lemma now follows im-
mediately.

‘With this result in hand we adopt a change of suffices to a dashed system
aecmdmg to a prescribed permutation (e.g. v = P Vg, ey v, 1 vﬂ_,,=
Py — ¥y, v — vn . =7;) and find that the multiple sum of formula (2) can be re-
placed by a corresponding multiple sum involving dashed suffices and in which
the partial suffices »,— ¥,_y, ..., »o— 1, 7, have been replaced by the prescribed
permutation of dashed suffices. The daghes are now dropped from the new
equation, and the second result of the lemmsa has been proved.

- Multiplicative properties.

Notation 4. Assuming the numbers to the defined, we set {4, B] =
= AB— BA, (4, B, C) = A(BC) — (4B)C.

Definition 3. A distributive ring R with zero element O for which
(i) [4,B]=0 (4,B=R) is a commutdt'ive distributive ring,
(ii) (4, B, 0)=10 (4, B, C=R) is a ring,
(iii) A*>=0 (A=R) and A(BC)+ B(OA)+ G(4B)=0 (4,B,C=R)
ts a Lie ring,
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(iv) (4, B, A)=0 (4, B=R) is a flewible ring,
(v) (4,4, B)=(4, B, A)=(B, 4, A)=0(4, B = R) is an alternative ring,

(vi) A+ A =014 and only if A=0 (AeR) is a strong distrbutive
7ng,

(vil) @ strong distributive ring R for which (4, A, A)=0 (A=R) is a
strong cube associalive ring.,

(viii) a strong commutative distributive ring R for which A*AB) = A(A*B)
(4, B = R)is a Jordan ring,

(ix) a strong flewible ring R for which A*AB) = A(4®B) (4, B=R)is
a noncommutative Jordan ring.

Reference may be made to Ch. 3 of [18] for the general theory of rings,
and to Chs. 1 and 7.of [3] for the theories of Lie, flexible, alternative, Jordan
and noncommutative Jordan rings.

Theorem 1. If R is a distributive ring, P{R} is also a distributive ring.
The same holds true with R and P{R} being: (i) commuiative distributive rings,
(ii) rings, (iii) Lie rings, (iv) flewible rings, (v) alternative rings, (vi) strong distri-
butive rings, (vii) strong cube associative rings, (viii) Jordan rings, (ix) noncom-
mutative Jordan rings.

Proof. That the power series of Definition 2 satisfy the relationships
oceurring in Definition 1 is easily verified.

When proving the remaining elauses of the theorem we tacitly assume in
each case that the assumptions relating to that clause hold.

(i) For all pairs of power series 4(2), B(z) in question, we have from the
commutative property of multiplication and Lemma 1:

© F] [ i
A@R)BE) =2 { X Aapy B} =3 { ¥ Byidoy 32 = B2) Af) .
i=0 i=0 i=0 i=0

(ii) The proof is as above.

(iii) We have

o j
(3) ) Afz)t= E { Z -Aa-l-i—-i Aa+i} et

§=0 {=0

If A, B are elements of a Lie ring A4?=B*= (4 + B)*=0, and hence
AB 4 BA = 0.
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Thus

Aa+i—iAa+i + Aa+iAa+i~i =10 (i = 07 17 vty [(.7_' 1)/2])
(4)

AepiiAe; =0  when i==[j/2], j=2¢,

where [#] is an integer and # = [#] +y (0<y <1). The coefficient of 2*** in
formula (3) is a sum of terms of the form (4). Hence A(z)2= O(z). Again
using Lemma 1, we have

A(2){B(2) C(2)} + B(2){C(2) A(z) } + C(2){4(2) B(2) } =

k

2

i
j=0 =0

I
T

{Aa—’,-i_i(Bb+k_i Gc+i) + Bb+k_i(00+z‘A~a+1—i) +
+ 0c+i(Aa+i_iBb+7c_.j)}za+b+c+k = 0(z) .
(iv) We have

@ k i
AR){B@R)AR}=> > > Aup i(Bopidoi )@,
k=0 f=0 i=0
© & ]

{A@BEIA@ =3 3 3 (AeposBopd) Aupis? .

k=0 J=0 £=0

The terms involving B,,. in the coefficient of 2°*****in these two compound
sums are

Aa+k-5(Bb+iAa+:i) -+ -A-a+;i(Bb+iAa+k—:i) (.7 = 07 1, .. [(k“ 1)/2])a

Aarri(Boyidars) when j=1[k/2], k=2j

and

(AapreiBopd) Aays + (AaysBop) Aaris (=10,1, ..., [(k— 1)/2]),

(Aa+k——i—Bb+i)-A-a+j Whe]l j - [70/2] 3y 75 = 2j .

If R is flexible and 4, B, C e R, we have A(BC) + C(BA) = (4B)0 + (CB)A.
Hence the above two sets of terms are identical, and A(z){B(2)A(2)}=
= {4(2) B(2) } A(2).
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(v) The proof is as for the preceding clause.
(vi) A(®) 4+ 4(2) == 0(z) if and only if A(z) = O(»).
(vii) If A4;, 4;e R, where R is a distributive ring and

- ~

O(A” A,) = .A_‘::Aj "]“ (A,-Aj + Ain).A.i 3 O(Ai, Aj)z.Ai(AiA,' + A,Az) + ,A.j_Azz.,
then

20(As, A)) = (A + A4+ A)— (Ai— A)A4,— 4,) — 2434,

20(A,, A;) = (Ao A)(A + 4) — (A, — A)(A,— 42— 24,42,

where 2D is used as an abbreviation for D - .D. Hence, if R is a strong

rd ~
cube associative ring, 6(4,, 4;) = 0(4;, 4;)(4,, A,=R). (It appears that
the assumption that R be strong must be made for this relationship to hold.)
Furthermore, we also have

P(Asy Ajy Ay) = (A 4;+ 4;4) A+ (A A+ A A) A+ (4,4, + 4, 45) A,
”~ 7 rd
= 6(./.4., + Ak, A,)““ 6(.Aj, .Az) — O(Ak, A,) y

~

(P(Az', -A:'; Ap) = A, (4;4,+ AkAj) -+ Aj(-Ai-Alc -+ AL'Ai) -+ —AI:(AiAi + A;»'Ai)

~ ~

= G(A_,, -+ -Aky 'Al) - G(Aia Az) - O(Ak: A1) 9

Vd ~

and hence again ¢(4,, 4,, Aj) = (4., 4ds, 4;) (4, 4;, 4, = R) it R is strong
cube associative.

By expansion, we have

w n m

AR)IAR =3 3 3 (AdanemAapm)do2®™™.

n=20 m=0 =0

In this expansion, we group together those products of the form (4,4,)4,
in which the suffices 4, j and k are unequal, those in which one equal pair oceurs
and, where they exist, those for which ¢ =j==% We derive

{A(2)*}A(2) = % G/n Patn,

N

11
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where
Ve [(n—1)/3] o
(5) Gn = z 0(-Aa+1’, f1a+n_.21’) + z 0(An+na_.2l’7 Aa+n-2n2+21’)+
y=0 v=0
[(n—1)/2] [(n—2v—1)f3]
+ z z QD(-Aa-;J“y Aa+71_1’_21"y Aa+1'+$”) + (n = 3%3)([1,,3)2.“1"‘ ]
y=0 vle=0

1y = [n[3], ny=[12], n; = [n[6]— (n— 1 = 6[(n— 1)[6]) — (n = 3n,)

for n = 0,1, ..., the numerical value of a Boolean expressicn such as (n = 3u,)
being 1 if n = 3n; and 0 otherwise. (The reader may verify formula (5) at
his leisure; its derivation has no special interest.)

Similarly we derive

AR){AR)2}= i é,,z“*’",

i

~ -
where @, (n=20,1,...) is expressed in terms of the functions 6(4,, 4;) and
~
p(d;, 4;, A;) by a formula analogous to (5). It follows that if R is strong cube

associative then G; = \G,, (n =0, 1,...) and hence that (4(2), A(2), 4(2)) = O(z).

We give the above method of proof because it can be extended to the follow-
ing clause. The result of the present clause may, however, also be proved in
the following way: we have (A4,(2), 4.(2), 4.(2)) = 0 for all polynomials of
degree n when # = 0. Assume that this relationship holds with = replaced
by n— 1 for some n>1. Writing out the three versions ¢f this relationship
with A4,.(2) replaced by A, .(2), A._4(2) + A,, 4, .(r)— 4, and judiciously
combining them with powers of z*, we find that the relationship in question
holds for A,(z) = 4, (s} + A,2", i.e. for all pelynomials of degree n.

(viii) If R is commutative and strong then, from clauses (i) and (vi),
P{R} is likewise. We set

6(A,, 4;]B) = A(A4,B) + (A A;+ 4,4,)(4,B),

(A, A;]B) = A{(AA;+ A,A)B}+ A,(A*B)
and have
7

20(4;, A;|B) = (A;+ 4;)*{(4: + 4;) B} — (4, — A,)*{(4d,— 4;) B}— 245(4,B) ,

~

20(4., 4;]B) = (i + A){(4;+ A,)*B}— (A~ A4,){(4,~ 4,)°B}— 24,(43B) .
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Ve

If A¥4B)=A4(A*B)(4,B=R) and R is strong, then 6(4,, 4,|B)=
.
=0(4;, 4,|B) (4:, 4;, B=R). Furthermore

P4y Ay, 44| B) = (4,4, + A;A)(A,B) + (A, A, + A, A)(A,B) +
+ (A:'Ak -+ -Ak A:‘)(Az‘B) =
_— G(A, "‘}" .Ak, A,lB) — 0(_14.5, AIIB) — G(Ak, A,!B) ]
P( Ay Ay Au|B) = A{(A; 4, + A A)B) + A,{(A A, + A, A)B) +
+ Ak{(Ai-Aj -+ Ai-Ai)-B} =
—0(d,-+ Ay, A,|B) — 6(4;, A:|B) — 6(A,, 4;|B)

and we again have @(A4,, 4;, 4,|B) = @(4,, 4;, A,|B) (4, 4,, A,, B=R).
As in the proof of the preceding clause, we have

r

n m x
Z Z Z (Aa+r...n-Aa+n_m) (-Aa+m——1Bb+l)zaa+b+r - z Grz3a+b+r,
=

n=0 m=0 rau(}

A(2)*{4(2) B(2) } =

T

i

-~

e
where the term involving B,,, in G, is

Wr—1f] - "o .
z G(Aa+1’y -Aa+r_2v !Bb—;.l) + z G(Aa-f-rz—‘zi'; Aa+r£_—2r+2v Bb+l)
y==0 v=0

(6)

[(r-1)/2]  [(r-2v-1)[s] v i
+2 2 P Aoy Aayrv oy Aoy | Boyt)+ 0 =315) 4‘1¢2;+rs (Agir, Boy)s

»=0 vi=0

where #3, 7, ... are defined by formulae similar to those defining n, 2., ... in
equation (5). Again

A(z){A(2)2B(2)} = i br patvir

~
where the term involving B,; in G, is obtained frecm expression (6) by replac-
ing the accent grave by an accent acute, and the last term by (r= 37y)-
Aoy (AL, Buyi). It follows that if R is a Jordan ring, expression (6) and its

companion are equal, i.e. szé, (r=20,1,...), and hence that A(z)2-
-{A(2)B(2)} = A(2){A(2)*B(2) }(A(2), B(z) = P{R}).
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(ix) If R is flexible, P{R} is likewise. The remainder of the proof is
as above,.
Oance it has been established that P{R} is a distributive ring, it immediately
follows that a number of identities holding for elements of R also hold for
elements of P{R}. For example, Zorn [21], has derived the formulae

(4B, €, D)— (4, BC, D) + (4, B, (D) = A(B, C, D) + (4, B, C)D
4, B,C, D ER)’

=4,B,0)+ (B, 0, 4)+ (C, A, B)— (B, 4, ¢) — (4, ¢,By— (C, B, A)
(4, B, 0 = R);

consequently for the elements of P{R} we have two similar relationships ob-
tained by replacing A by A(2), B by B(z), and so on and holding for
A(2), ..., D(z) = P{R} in the first case and for A(z), B(2), O(z) = P{R} in the
second. The latter relationships may be proved either by manipulating the
elements of P{R} as a distributive ring or, from first principles, using produects
of power series expansions involving the elements of R.

The defining relationships lead to special systems of derived identities in
each of the cases adumbrated in Definition 3. For example, the identity
AB - BA = 0 follows from the relationship 42==0 in the case of a Lie ring,
whilst the formula (4, B, 0)— (0, B, 4) =0 follows from the relationship
(4, B, 4) =0 in the case of a flexible ring. If 4, B, ¢ are elements of an
alternative ring, we have Zorn’s identities [21], (4, B, C)=— (B, 4, C) =
=—(C, B, 4) =— (4, 0, B), Moufang’s identities [12] (AB)(CA)= {4A(BO)}A =
= A4{(BO)A}, (4, B, 0)A= (4B, 0, 4), (4, B, CA) = A(C, B, A) and, setting
A+B=AB+ BA, the identities of Bruck and Kleinfeld [4] (4% B, C) =
=44, B, 0), (C,B, A%) = A-(0, B, 4). All of these derived identities are
satisfied by the corresponding power series of Theorem 1. If R is a Lie ring,
we also have the relationship A(2)B(z) + B(2) A(2) = 0(2) (A(2), B(z) = P{R}),
and so on.

Rings belonging to classes similar to those considered in clause (v) of
Theorem 1 (for example, those studied by Kesier [10], for which only theright
alternative identity (B, 4, A) =0 holds) can also be treated by use of the
same methods.

Once it has been shown that results concerning homogeneous linear expres-
sions of the third degree can be extended to the theory of formal power series
with coefficients over a strong distributive ring, such power series fall within
the domain of application of a number of theories. For example, Zorn [21],
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bases a classification of distributive rings upon the use of four rules:

I: (4, 4,4)=0,
II: [[4, B], O]+ [[B, €, A] + [[C, 4], B] =0,
II: (B, 4, 4)— (4, 4,B) =0,

IV: (B, A, A)—2(4, B, A) + (4, 4, B) =0,

showing that an alternative ring is defined by the scheme I --1II 4 IV, that
a flexible ring is defined by the scheme I+ IV, and that Jordan’s cyeclic
systew for every triad of elements 4, B, ¢ of which (4, B, €)= (B, C, 4) is
defined by the scheme III + IV. Outcalt [15] has shown that if (4, B, €)=
= (B, 0, 4) (4, B, ( =R), where R is a strong distributive ring, then R is
strong and alternative if and only if (4, 4, 4) = 0 (4 = R); Kosier [10], has
given a theory of distributive rings whose elements satisfy these two rela-
tionships. Again, Osborne [14] defines a partial ordering on the set of all ho-
mogeneous identities satisfied by the elements of distributive ring, and finds
necessary and sufficient conditions that an identity does not imply an identity
lower than it in the ordering. All of these theories now have application to
the power series under discussion: the power series with coefficients over a
strong distributive ring which constitute an alternative ring both satisfy and
are defined by formulae analogcus to I~ 114 IV above, and so on.

Knopfmacher [11] has given a theory of distributive rings whose elements
satisfy a system of identities S, and shown that special choices of S lead to
the definitions of Lie, Jordan, alternative, associative and commutative di-
stributive rings; with Theorem 1 in hand, this theory can be applied to formal
power series with coefficients over a distributive ring.

It should perhaps be pointed out that the elements of many of the rings
considered in Definition 2 may be represented as elements of a linear algebra
over a field. For example, square, upper triangular and lower triangular ma-
trices of finite dimension, and quaternions are elements of a linear associative
algebra; the numbers of a hierarchy of systems of 2» units (n =0, 1,...) due
to Albert [1];, which places the real numbers, complex numbers, quaternions,
Cayley numbers and extended Cayley numbers in a unified setting, are elements
of a flexible algebra [17]; Cayley numbers [5] (see also [7], [7]; and ch. 7 of [3])
are elements of an alternative algebra with eight units; various representations
of Jordan algebras are known [3]. We remark, however, that formal power
series with coefficients over a linear algebra are not themselves elements of
a linear algebra.




166 P. WYNN [121

Theorem 2. If a distributive ring R possesses ¢ unit element I, then
P{R} also possesses a unit element.

Proof. The unit element in question is p{0; 4,|2}, where A, =1,
Ay=0 (r=1,2,...).

Definition 4. The set C{R} of all elements & of a distributive ring R for
which [4,&=0 (4d=R), (4,B,8 =4, B)=(4,B)=0 (4, B=R) is
the centre of R.

As i3 easily shown, the elements of the centre of a distributive ring form
a commutative ring.

Theorem 3. If a distributive ring R possesses a centre, so does P{R}.

Proof. It is a simple matter to verify that the set of formal power
series with coefficients over C{R} also satisfy relationships analogous to those
of Definition 4. '

Albert [1], and Kosier [10], have constructed a theory of strong rings R
(2 which possess a centre b) whose elements satisfy a nontrivial identity of
the form

o,(CA) B + 0,(CB) A + 0, B(CA) + o, A(OB) +
+ a,(A0)B + o,(BO) A + o, BLAC) + ot A(BC) = 0

(4,B,C=R, o, ..., 2, C{R}) and c) possess a nonflexible subring of ele-
ments and d) possess a unit element. This theory can be extended to the
formal power series of Theorems 2 and 3.

Definition 5. A distributive ring R for which, when A, Be R, AB=10
if and only if either 4 =0 or B=0 1is said to be without divisors of zero.

Theorem 4. If the distributive ring R is without divisors of zero, then
so is P{R}.

Proof. If A(2)B(s) = 0() then, equating coefficients of 2t upon both
sides of this equation, 4,B,=0, i.e. either 4, or B,=0. Assume that it
has been shown that 4,=0 (w=a,a-+1,...,a4+a'—1) B,=0 (=0,
b+1,..,b+0'—1) where o'+ b =r. . Equating the coefficient of gttt
upon the left hand side of the equation A(z)B(z) = O(z) to zero, we find
that A, By =0, i.e. @’ or ' can be increased by unity. In this way we
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show that all coefficients of at least one of the series A(2) and B(z) can be
reduced to zero.

As is easily verified, if R is without divisors of zero and the formal power
series A(z) satisfies eithel of the equations A(z)B(z) = C(z), B(z)A(2) = C(2)
(4(2), B(z), C(2) e P{R}, B(2) 5= O(2)), then it is the only one to do so.

4. - Transformations of formal power series.

Definition 6. A transformation D operating upon every element of a di-
stributive ring R and such that D(4 + B) =DA + DB, D(AB) = A(DB) +
+ (DA)B (4, B=R) is called a derivation.

Definition 7. The transformation A(z) ~DA(2) = p{a; DA,|2} where R
is a distributive ring permitting a derivation D and 4,eR (r=a,a+1,..)
is called the coefficient derivation €{D} of the formal power series A(z).

Theorem 5. Let R be a distributive ring permitting o derivation D; then
the coefficient derivation €{D} over P{R} is a derivation

Proof. From Theorem 1, P{R} is a distributive ring.

We have

DUEEE} = 3 O 3 Aus B

i=0

@ i
- 2 z {@(-Aa-w‘_i Bb+i) } e
=0 i={

i

and two similar series for A(z){®B(z } and {DA(z)}B(z) in which the expres-
sion D(Aqp;_:Byy:) is replaced by A4, 1i_i(®Byy;) and (DA.,,_;)By.s respect-
ively. Hence

DIA(2) B(e)} = A(2) {DB(:)} + {DAR)}B() (4(e), Ble) = P{R}).

Definition 8. A distributive ring R is said ito permit a distributive in-
volution & if associated with every element A € R there ewists a t9~unsformatz‘on

~ ~ [ T
A—A (AeR) such that A=A (A=R) and A+ B=A4+ B, AB__

=BA (A4, B=R); the sum t(4)= A + A s called the trace of A; the product
n(4) = A4 is called the norm of A; & is said to have central trace if t( t ) € C{R}
(4 =R), and to have a central norm if n(A)e C{R} (4 = R).
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Definition 9. The transformation A(z)—A(z) =yp{a; A,|2} where R is
a distributive ring permitting a distributive involution § and A,eR (v = a,
a—+1,...) is called a coefficient involution CS{@} of the formal power series A(z);
the formal power series t{A(z)}= A(r) -+ A(2) and n{d(z)}= A(2)d(z) are
called the trace and norm respectively of the formal power series A(z).

Theorem 6. The coefficient involution @Z{@} associated with each series of
the set P{R}, where R permits the distributive involution §, 8 a distributive invo-
lution over P{R}; if S has a central trace (norm) over R, them C{S} has a
central trace (norm) over P{R}; if T has a central trace over R, then n{A(z)}=
— n{4()} (4() = P{R}).

Proof. In the notation of Definition 9, we have A(2) € P{R}, and it is

2 e T T — A
also clear that A(z)= A(2) (A(2) = P{R}), A(®) + B(z) = A(2) + B(z) (4(»),

B(z) = P{R}). To prove the first part of the theorem it remains to show that
T ——

A(2)B(z) = B(z) A(2). We have

T w e T T — .
A(z)Blz) = Z z Aa+i—i Bb+i 2™ —

j=0 i=0

@ i
= 3 ¥ By ., 2 =B)AdE)-(Ak), Bl) = P{R)) .

j=0 i=0

Turning to the second part of the theorem, we remark that the coefficients
of the series t{A(2)} are (4,) (v =a, @ --1,...) each of which belongs to the
centre of R; hence t{4(z)}e C{P{R}}. We also have

NA@Y= 3 {5 Ay}

j=0 i=0

If w(d) = AdeC{R} (A=R), then (4 + B)(4 + B)eC{R} (4, B=R) and,
since the elements of C{R} form a distributive ring BA 4 ABeC{R}
(4, B=R). Hence

Aa+7'~1"§ﬂ+i + A"+i4{1a+f—i € C{R} (7‘ =0,1,...,[(j—1)/2];j=0,1, )

A A, €eCR} if =2 when i=/[j2] (j=0,1,..).

Hence the coefficients of the series n{4(e)} belong to C{R}, i.e. n{d(2)}e
C{P{R}}.
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With regard to the last part of the theorem we have, subject to the stated
conditions,

n{d(z)} = A(z) A(z) = [t{4(2)} — A(»)] A(»)
= A(2)t{d(2)} — A(2)*= AR)[t{4d(2)} — A)] = n{d(2)}.

The above theorem can be applied to the cases in which the elements of R
are quaternions over a field, Cayley numbers over a field, the numbers of
Albert’s hierarchy and those of the author’s generalisation of it [19].

We proved the result n{d(z)} =n{d(z)} when & has a central trace only
because we make subsequent use of it. Once it has been shown that C&{%} is
an involution, the general theory of involutions can be applied to the power
series in question; we mention, in particular, a number of results concerning
involutions over distributive rings given in [19];, and the special result due
to Zorn [21), that n(4B) =n(4d)n(B) if 4, B are elements of an alternative
ring permitting involution.

5. - Properties of the inverse.

We saw in § 3 that the multiplicative properties of the distributive rings
R are largely carried over to the rings P{R} considered in that section. The
-same is not true with regard to the properties of the inverse cf the elements of R.

Definition 10. If fo the element A of a distributive ring R posssessing
a unit element I there corresponds an element A™*® e R such that A™WA =1,
then A7 is called a left inverse of A. A right inverse A™'® of A is similarly
defined. If both inverses of A ewist , are unique, and are equal, A is said to pos-
sess a two sided inverse.

Notation 5. The set of elements A of a distributive ring R possessing a
left (right) inverse is denoted by R, (R,,). R, denotes the intersection of Ry and R, .

The set of equations determining the left inverse p{—a, A, |z} of the
power series A(z) with coefficients over a distributive ring R is

L
r

(7) Al A, =TI, S A, Aers=0 r=1,2,..).

—_a
v=0

If R, exists and 4,€ R;;, then we may take A:, = AP {0 ensure that the
first of these equations is satisfied. However, without assuming something
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further concerning the multiplicative properties of R it is in general impossible
to determine the further coefficients A'_GM (v =1, 2,...): in this case a left
inverse is defined for the elements of R but not for those of P{R}.

Of the further assumptions concerning the elements of R that can be made,
R can be taken to be a field, and we have the well known result (Ch. 18 of [18])

that P{R} is also a field. We shall derive some further special results.

Theorem 7. Let R be a ring containing a non-empty set R, of elemenis
with left and right inverse; then P{R} is a ring with a non-empty set of two sided
INVerses.

Proof. Asis well known (see Ch. 3 of [18]) if R is a ring, 4 e R, and
A7M® and AP exist, then these inverses are unigue and identical; we de-
note them both by 4~ If 4, R;, then equations (7) may be solved and we
derive

r—1
(8) Al=47, A =— 5 A A ATY (r=1,2,..).
p=0

The equations to determine the right inverse p{—a; 4, |2} of A(z) are

n

(9) AaA- - Iy z Aa+r._v-A”_a+,. =0 (’)’ = 1, 2, ...);

—a
v=0

they may be solved, and we have

r—1
(10) A =AT, Al == 3 ATMA0 AL, (r=1,2,..).

1=

Since the left and right inverse of A(#) exist and P{R} is a ring (clause (ii) of
Theorem 1) it follows without further deliberation that these inverses are unique
and identical, and that the same holds for all seriés p{a; A,|2} for which 4, € R;.

It is, however, instructive to prove from first prineciples that the series
p{—a; 4,|2} and p{—a; 4] |2} are identical. We have A’ = A" . Assume
that 4_,,, =4, »=0,1,..,7—1). Replacing A, by 4" ., in the se-
cond of formulae (8) and using the appropriate equations of the set (10), we have

r—1 y—1
Al =— A7 A AT+ T AT S Agp Al Ay v AT

—atr T
yeal ¥/ eg
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and, by rearrangement,

r—2 r—r-1
(11 A, =— A7 A, ATV S AT Agwm AL Ao AT

y=0 p/=1

"

In the same way we derive an identical formula for A~a+, in terms of the coef-
ficients A'_,H_,, (»=0,1,...,7— 2). Since A'_a_,_v = A'Law (»=0,1,..,7r—2), we
have A4’ =A4", o It follows by induction that A’ = Al (r=0,1,..).

The above theorem has applications to quaternions, to square matrices,
lower triangular matrices and upper triangular matrices of finite dimension,
and to certain classes of infinite matrices. We give a further result concern-

ing the nature of the inverse series below (see Theorem 11).

Definition 11. A distributive ring with centre C{R} is said to possess
an invertible subcentre C {R} if R possesses a unit element I and C{R} contains
a nonempty subset C;{R} of elements such that to any & € C{R} there corresponds
an olement E&-1e C{R} for which &1& =1.

Since the elements of C{R} form a commutative ring it follows that the
number &t of the above definition is also a right inverse and is unique.

Theorem 8. Let the coefficients of the formal power series pf{a; Ay|2} be
elements of a flewible ring R with invertible subcentre C,{R}, and let A, C{R}.
Then this series has both a left and a right inverse, and these series are identical.

Proof. Asin the proof of Theorem 7, we find that equations of the form
(8) and (10) can be solved. Assuming that A'_GH = AZ,H_,, (»=0,1,..,r—1),
we derive in analogy with equation (11)

T2 r—-y—
1

1
(12) A~a+r = (Aa—lA‘H-T)‘A:l + 2 z [{ ;—1 (Aﬂ+”' A’—a+v)}A¢+'—”—-""] A‘;l’

v=0 v'=0

Fe2 fe—y—1
"

(18) ALy, =— A7 (4o A7) + 3 3 A7 Ao (Al Au o) A7

y=0 /=1

The first terms on the right hand sides of equations (12) and (13) are, of course,
equal. The second term on the right hand side of eqiwtion (12) is a sum of
terms of the form [{§(AB)}C]& -+ [{£(OB)}A]& (setting &= A7, A=A, .,
B= A'_a+, yC=A4.1, »») and (when r—y=2y") of the form [{{§(4B)}4]é.
The corresponding terms upon the right hand side of equation (13) are
§[A{(BO)E}] + E[C{(BA)E] and £[A{(BA)E}]. As in the proof of clause (iv)
of Theorem 1, these two pairs of terms are shown to be identical.
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Theorem 8 has applications to Cayley numbers over a field, to the numbers
of Albert’s hierarchy and to the flexible rings of a system constructed by the
author [197];.

Theorem 9. If R possesses an invertible subcentre, so does P{R}.

Proof. If A4,.,eC{R} (v=0,1,..) and 4,eC,{R}, both the left and
right inverses of pf{a; 4s]2} can be constructed; these inverses belong to
C{P{R}}, they are identical and unique.

The presence of an invertible subcentre of a distributive ring of formal
power series allows such series to be brought within the domain of application
of further theories. As an example of such a theory, we mention that Ro-
~dabaugh [16] comsiders & ring R for which (4,4, 4)=0, (4,B, 0)=
= &((4), 7(B), #(C)) where ¢eC,{R} and = is in the symmetric group on
three letters.

Definition 12. A distributive ring R with unit element I to each nonzero
element A of which there corresponds a wunique element A-'e R such that
A A =AA =1 is called a division ring.

Theorem 10. Let R be a distributive ring possessing an inmvertible sub-
centre C{R} and permitting a distributive involution § with central trace and
norm, and let A(z) = p{a; Ay|2} be a fized formal power series with coefficients
over R and such that n(A,) € C,{R}; then there exists a formal power series A=*(z)
satisfying the relationships

(14) ARyt AR)=1(z), A()A(R)=1(2)
and furthermore
(15) ARy = A(@)n{de) ]} =n{d() }14A() .

If R has no divisors of zero, the series A~z) is uniquely determined by either of
relationships (14) and if, in addition, n(A) € C,{R} for every nonzero element A
of R, then R and P{R} are division rings.

Proof. We set n{A(2)}=p{2a; 7|z} where, in particular, 7, =n(4d,)
and 7€ C{R} (v =2a + 1, 2a + 2, ...). From Theorem 9 it follows that the
inverse series n{A4(s)}! exists and belongs to C{P{R}}. Using the first of
formulae (15) we then have

A(2) A (z) = AR [A@)n{d(2)} 1] = {4d() A () }n{d(e)}* = I(2) .
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Again, since n{A(2)} =n{Ad(z)} when & has a central trace (Theorem 6), we
have

AR AR) = n{AR)} 1 {A@) AR} =n{d@) rn{d@)}=1().

That 4(2)~*is the only series to satisfy either of relationships (14) if R is without
divisors of zero is a trivial consequence of Theorem 4. Lastly, if n(4) e C,{R}
for every nonzero element of R, the inverse 4=1= An(4)~! of every nonzero
element 4 of R exists, and the inverse of every series distinet from O(z) be-
longing to P{R} can be constructed; thus, if R is without divisors of zero,
R and P{R} are division rings.

Theorem 10 in its entirety can be applied to the cases in which the ele-
ments of R are quaternions over a formally real field, Cayley numbers over
o formally real field, elements of any one of the recursively constructed alge-
bra’s of Albert’s hierarchy or of the author’s recursively constructed system
of rings.

Theorem 11. Let R be a distributive ring permitting « distributive invo-
lution A4 (A= R); let A(2) be a formal power series with coe}'ﬁcients over R
which possesses a two-sided inverse A(z)~1 and for which A(2) = A{). Then

P
A(z)y1= A(2)".

Proof. The equ(ntions determing the coefficients of the left inverse series

p{—a; A |2} are (7). Applying the involution to both sides of these equamons,
we have
4,4 =1, 3 A, .4 ,.,=0 r=1,2,..),
=0
or
A4, =1, 3 Au. A, =0 (r=1,2,..)
y=0

These are, however, the equations which determine the coefficients of the right
inverse series; since this is identical with the left inverse series, the numbers
{4'} and {4]} are equal.

The above theorem may be applied to the case in which the {4,} are square
matrices, and the involution 4 —4 is either 4 — A7 or A->A7, where A”
is the transpose of 4, and the bar denotes a complex conjugate.

We conelude this section with the remark that the generalised inverse of
2 nonzero formal power series with vector valued coefficients can also be de-
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fined [19],. However, vectors are not closed with respect to binary multipli-
cation (in the sense of matrix multiplication) and hence such inverses are not
subsumed within the theory of this section.

6. - Recursive application of the theory.

It is clearly possible to apply the theory of this paper recursively, consider-
ing power series in one variable whose coefficients are power series in another,
and to do so a denumerably infinite number of times.
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Sommario.

8i dimostra che il sistema P{R} di serie di potenze con coefficienti definiti su un anello
distributivo R condivide in gran parte le proprieté moltiplicative dei coefficients; in par-
ticolare che se gli elementt di R si moltiplicano in modo commutativo, cost pure si molii-
plicano quelli di P{R}, che se R & un anello, pure P{R} & un anello ¢ che lo stesso vale
per anelli di Lie, anelli flessibili, alternativi e per anelli di Jordan commutativi e non.
8¢ dimostra anche che se R ha wn elemento unita, anche P{R} ha un elemento unild; che
P{R} ha un centro se R ne ha uno; che se R ¢ senza divisori dello zero, lo stesso & vero
per P{R}; che se esiste un’algebra derivativa definita sugli elementi di R lo stesso & vero
per P{R}; che se R ammetie un’involuzione distributiva, anche P{R} la ammelte ¢ che se
Vinvoluzione su R ha traccia centrale ¢ norma, lo stesso & vero per quella di P{R}. Si
dimostra che una serie di polenze con coefficienti definiti su un anello R, avente un sotlo-
insieme nonnullo R, di elementi invertibili e il cui coefficiente della potenza pit elevata
appartiene a R;, possiede inversa biunivoca. St analizzano anche allri casi n cui una
serie di potenze possiede inversa biunivoca, in particolare si studiano quelle serie in cui
la norma del coefficiente potenza pitv elevata appartiene al centro di un anello distributivo
ed & invertibile. 81 dimostra che se una serie di potenze ha coefficienti autoinvolutivi ed ha

\

inversa biunivoca, allora tale inversa & anche autoinvolutiva.
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Abstract.

It is shown that the system P{R} of formal power series with coefficients over a dis-
tributive ring R shares to a large ewtent the multiplicative properties of the coefficients;
in particular that if the elements of R multiply commutatively, so do those of P{R}, that
if R is a ring, P{R} is also o ring, and that the same holds with regard to Lie, flexible,
alternative, commulaiive and noncommutalive Jordam rings. It is also shown that if R
possesses a unit element, P{R} also possesses a unit element, that P{R} has a centre if
R las one, that if R is without divisors of zero, the same is true of P{R}, that if ihere
exists a derivative algebra over the elements of R, the same is true of P{R}, that if R per-
mils a distributive involution, P{R} does the same and that if the involution over R has
a central trace and norm, the same is true of that over P{R}. It is proved thal a formal
power series with coefficients over a ring R possessing a nonempty subset R; of invertible
elements, and whose leading coefficient belongs to R; possesses a two sided imverse. Turther
cases im which a formal power series possesses a two side inverse are investigated, in par-
ticular that in which the norm of the leading coefficient belongs to the centre of a distri-
butive ring and is invertible. It is shown that if a formal power series has self-involutive
coefficients and has a two sided imverse, then this inverse is self-involulive.



