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1. - Introduction.

In recent years many authors have proved various fixed point theorems
for nonlinear operators in Banach and Hilbert spaces. If D is a closed, bounded
convex subset of a Banach space X, then a contraction mapping 7' (| Tz —
— Tyl <ajz—yl, 0<<a<1,VYz,yeD) has a unique fixed point in D, but a
nonexpansive mapping ([Tz— Ty| < |z—y|) need not. If X is either uni-
formly convex [7] Banach space or reflexive Banach space with normal strue-
ture [1], then the existence of a fixed point for nonexpansive mappings have
been proven [1], [2].

It was Krasnosclsky [6] who proved the existence of fixed points for sum
of two nonlinear operators, namely the following theorem.

Theorem A. Let C be a closed, bounded and convex subset of a Banach
space X. Let A4: (—C be a nonexpansive and B: ¢ — (¢ be completely
continuous such that Az + Bye ( for all #,ycC. Then T=A-+B has a
fixed point in C.

By putting the weaker condition Az -+ Bze ¢ in place of Az - ByeC,
the above theorem is given in [5], [10] and [7].

The aim of this paper is to prove some fixed point theorems for sum of
two nonlinear operators which generalizes all the results proved till now on
this topic. Also first time in this paper an attempt has been made to relate
the potential operator with densifying mappings.

(*) Indirizzo degli Autori: S. SrrvasTava, Department of Mathematics, Bowie
State College, Bowie Maryland, 20715 U.S.A.; K. L. SixeH, Department of Mathematics,
Texas A. and M. University, College Station, Texas 77843, U.S.A.

(**) Ricevuto: 18-VII-1974.
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2. - Preliminary definitions and results.

Let X be a real Banach space and D be a open, bounded subset of X.
The measure of noncompactness of D denoted by (D) is defined as
inf{e>0|DcJJ,; such that diameter §, < e}. Closely related to the concept

=1

of measure of noncompactness is k-set contraction defined {8] in the follow-
ing way.

Definition 1.1. Let D be a bounded subset of X and 7:D — X be
continuous. 7' is said to be k-sef contraction if for some k> 0, if for any
bounded subset 4 of D

Y(T(4)) <Ep(4) .

Definition 1.2. TLet D be a bounded subset of X and 7: D — X be
continuous. 7' is said to be densifying if for any bounded subset A of D

1) P(T(4)) <ky(4) .

If in (1) we have (T(A)) < y(4); then T is called 1-set contraction.

Remark 1.1. The sum of two k-set contractions, the composition of
two k-set contractions is again a k-set contraction [9].

Let X be a real Banach space, X* its dual space and T a nonlinear (or
rather, not necessarily linear) operator mapping X into X*.

Definition 1.3. The operator 7: X — X* is strongly monotone if there
exists a constant x> 0 such that

(To— Ty, s— y)>ea(flo—y[)* for all 2,y,eX.

Definition 1.4, The operator 7: X — X* is hemicontinuous if it is
continuous from line segment of X to the weak topology of X*.

Theorem B ([4], pp. 64). Let X be a reflexive Banach space and X
its dual. Let 7': X —X* be hemicontinuous strongly monotone operator
mapping X into X*. Then the operator I is bijective and 7! is continuous
irom the strong topology of X* to the strong topology of X.
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Theorem 2.1. Let A be a hemicontinuous densifying operator defined
everywhere on the Hilbert space H and satisfying

(1) (u— v, Au— Av)<{l— (1 + 1) (Ju— v]?)

for all u,ve H, where o <<— % is fived. Suppose that L(z) is a densifying map
defined on the ball D(|x|| <r) and such that the operator ((1fer) + 1)2{L(z) + A(B)}
acts from D into itself, where 0 is the zero vector. Then the equation x = Az - La
has at least one solution in D.

Proof. Consider the equation F(z) = z— A(x) + A(0). Using condition
(1) we bhave
(2) (u—v, Fu— Fv) = (u— v, u— Auw— v-+-Adv)= (h— v, 40— v— (Au— Av))

= |u—v|*— (u— v, du— Av) > Ju—v]*— {1 — (1 +1/e)%} Ju— v]|?
= {1 — (1= (@ + Y2} fu— 02 = (1 + L) fu— o]

It follows from (2) that F is strongly monotone operator. Now using the
monotonicity and hemicontinuity we infer from Theorem B that F# has an
inverse operator E defined everywhere on H.

Also from (1) we have

Ju— o] | Pu— Fo] > (1 + 1/o)2fu— o]

Therefore

3) u=of< (2] 1 o

If F(u) =z, F(v) =2, then u = R(z), v = R(z,).
Substituting this in (3) we get

(4) 1B (z) — R(zo) [ < (Lfoe + 1)y — 2] .

Furthermore, since F(0) =0, we have R(f) =0. Now we consider the
equation » = R{L(z) 4+ A(0)}. Since L(x) + A(0) is densifying continuous oper-
ator and K by (4) satisfies a Lipschitz condition with constant % < 1. Thus
L(x) + A(0) is a k-set contraction with k < 1. By putting z, = [L{z) -+ 4(0)),
%, = 0 in (4) we have

«+ 1

o

) IRL() + A©)}] < ( ) |Z(@) + 40)].-
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Since by the hypothesis the operator ((1/e) + 1)2{L(z) -+ A(6)} acts from
D into D, it follows from (5) that R{L(x)+ A(0)} also acts from D into D.
It follows from Darbo’s Theorem [3] that the equation x = R{L(z) + 4(0)}
has at least one solution z, € D.We apply F to the equationu, = R{L(z,) + A(6)}
to obtain :

Fay = FR{L(w,) + A0)} , Fao= L(xs) + A(6)
or
wo— A(@o) + A(6) = L{z) + A(0) .
Thus 2, = L(#,) + A(z,). Thus the theorem.

Theorem 2.2. Let D be a bounded, closed and convexr set in a Hilbert
space H. Let T: D—D be a densifying map and A(x) be also a densifying
map defined on D with values in H. Suppose T(x) = T(x) + A(x) acts from
DD and I—T is convew (weakly linear semi continuous on D). Then there
ewists at least one €D such that: x,= T(z,) + A(x,).

Proof. For any fixed numbers & < 1 define the mapping F(z) = k[T (z) +
+ A(z)]. Then the mapping F(x) is a k-set contraction with % < 1. Therefore
by Darbo’s Theorem [3] F(x) has a fixed point z,e D, ie. xp= k[T(x:) +
+ A(wx)] = F(wy).

Let %, be a sequence of numbers such that 0<%,<1 and %,—1.

Then: o, — T(@p) — A(x) = (b— 1)[T(@:) + A(z,)]. Clearly T and A map
bounded sets into bounded sets, hence |T(x;) -+ A(w:)| <M, a constant for
all k<< 1.

Therefore

|, — T(@,) — A@)]| = [ba— 1] [ T@.) + Al )] < [(ka—1)]- M >0 .

Thus inf o — To— Az = 0.
€D
Now D being closed, bounded convex subset of a Hilbert space H is also

weakly compact. Now since D is weakly compact and I— T is weakly lower
semicontinuous on D. Therefore |#— Tx| has its infimum on D. i.e. there
exists a point @, €D such that: |o,— T, | = inf |@, — T'mf. But inf |(I—
z€D
—~TYa| = inf |o— To— Az = 9.
Therefore |2, — T,| = 0. This implies that @z, = Ty, i.e. Tw, -+ Az, = .
Thus the theorem.
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Theorem 2.3. Let D be a nonempty bounded closed convex set containing
the origin as interior point in a reflexive Banach space X. Let A: D—D and
B: DD be a densifying maps. If (I— A— B) is convex on D. Then there
exists at least one xyeD such that Awm, + Bz, = x,.

Proof. Since a closed, bounded, convex, subset of a reflexive Banach
space is weakly compaect, therefore D is weakly compact. Since a convex con-
tinuous real valued function in a Banach space is lower semicontinuous. There-
fore |z— Az — Bz| is weakly lower semicontinuous. Hence |o— T|, where
Tx = Ax + Bz has its infimum on D ie. there exists x,€D such that
(I — Thay|| = int [(I— T)a]. ~

‘We need only to show that inf |(I— T)#|| == 0. But this follows as in
previous theorem by taking k7T, for 0 < k< 1.

Corollary. If we take B =0, then we get a result due to Sadovsky [10].

Definition 3.1. Let D be a subset of a Banach space X. Let f: DX
be continuous map. We call f locally almost nonexpansive (LANE) if and only
if for all #eD and ¢>0 there exists a weak neighborhood Nz of # in D
such that for all w, veNwm, [f(u)— f)|<|u— o] +e

Theorem 3.1. Let Gy, G, be two closed, bounded, convex sets of a reflexive
Banach space X. Let f,: G, — @, be locally almost nonexpansive (LANE) map
and f,: Gy— X be a nonexpansive map. Then fyof, is LANE.

Proof. It is enough to show that for any weakly convergant sequence

{®.}, {¥.}, ®, > (2, converges weakly to ), y,—y and any £>0, there
exists an integer N(¢) such that

Mfsoful@n) — faofilyn) | < |20 — ¥ | +e, for any n>N.
Now ”fzofl(mn) — faofi(¥n) “ < ”f1(«'17n) — f1(¥,) ”: Si_nce fa is nonexpansive.
Thus |feofi(@.) — feofa(¥a) | < [f2(@n) — Fo(ya) || -
But f;, LANE implies
Hfl(wn) - fl(:’/n) ” < ”wn— yn” + €.

Therefore f,of, is LANE,

Theorem 32 Let Gy, G, be closed, bounded, convexr wealkly compact sub-
‘set of a Banach space X, and f;: G,—>X be a LANE and weakly continuous
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map. Let fo: Gy—>X be a LANE map. Suppose f,(Gy) C Gs. Then f = f.of,
is @ LANE

Remark 3.1, In the proof of Theorem 3.2 we will use the following
theorem.

Theorem C [9]. Let G be a closed, bounded, convex and weakly com-
pact subset of a Banach space X and f: @ — X be a continuous map. Then
f is LANE if and only if «,, y,€G, ©,—~>®, y,—>y then there exists subse-
quUences L, —&, Yo —Y such that for any ¢> 0 there exists an integer N
such that

@) — Flya )| < lon,— ya | -+, for m,>N.

Proof of Theorem 3.2. Suppose {z.}, {y.} C G, such that z, —« and
Yo —> .

Now ”f2°f1(mn)“ faof1(¥x) ” = ”f2(f1(mn)) - fz(f1(?/n)) H
Suppose fi(z.) = u, f(y.) —». Then there exists flw,,j, fly,,j such that for
any e¢> 0 there exists an integer N such that

”fz(fl(mn,))“‘f (fl Yn, ) < lful@ n; ./n We/2,

because f, is LANE. Now
filw,) € Gy 3 fl(:c,,j) €@, such that 7‘1(.70"5) -,
fily.) € Gy = fl(y,zj) €@, such that fl(ynj) >
Suppose % 3s~v, then w— v 0. Therefore u—ov=5n>0.

Ju— o) = |Fu—v)] where FeX*; |[F|=1.
Ju— o] = |Fu— Fo| = |[Fu— F(fy(x,) + F(f(@.))) —
— P(1i(w.)) + Pha(y)) — P0)]
<[ Fu— F(fa(@a)) | + 1F(ful@n)) — F(fay)) | +
+ 17 (fu(ya)) — F (o) |
<ef3 + |F| + lfi(@) — fuly)]| + I3
<ef3 + of3 + o, — g, + 3.

Since f, is LANE
”’I,{,—-— 1)” = ”wnj'— ynjH +e.
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Summary.

In recent years many authers have proved various fized point theorems for nonlinear
operators in Banach and Hilbert spaces. If D is a closed, bounded convex subsets of a
Banach space X, then a contraction mapping T, has unique fized point in D, but a non-
expansive mapping need not. If X is either uniformly convexr Banach space or reflective
Banach space with normal structure then the existence of a fized point for nonexpansive
mappings have been proven. It was Krasnosclsky who proved the existence of fiwed points
for sum of two nonlinear operalors.

The aim of this paper is lo prove some fized point theorems for sum of two nonlinear
operators which generalizes all the resulls proved wll now on this topic. Also first time
in this paper an attempt has been made to relaie the polential operator with densifying
mappings.







