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B. 0. CHAKXKRABORTY (%)

On the algebraic and topeological structure

of a class of entire Dirichlet series. (**)

1. - Introduction.

Let 2 be the class of entire Dirichlet series having the same sequence,
{A.}, of exponents. Let

(1.1) f(s) = 2 @n €XP [$44],
(1.2) g(s) = % b, exp [sA,] (s=0-+17),

be two elements of 2. Here we tacitly assume that 0< i, < 1, << ... < 1,, = co.
We now define two compositions, namely, addition (4) and star-multiplica-
cation (*) in the set (2 in the following manner:

f(S) + g(S) = g (a’n + bn) exp [Sln] ’

1(8) #g(s) = > anb, exp [$Aa] .

=1

The object of this paper is to study the algebraic and topological structure
of . In this paper we shall follow Rudin’s [1] definition of Banach algebra
and not of Simmons’ [2].

(*) Indirizzo: Department of Pure Mathematics, University of Calcutta, 35 Bally-
gunge Circular Road, Calcutta 19, India.
(**) Ricevuto: 15-I-1974.
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2. — Theorem 1. ZThe set £ is closed with respect to the two compositions
-+ and *.

Procf. Let f(s), g(s) € 2. Sinee both f(s) and g(s) ave entire, they ave

bounded in o<z for any < oo and the series

> laalexplod], 2 [ba]exp [02,]

11 M=

are convergent for all ¢. Hence, > {|a.| + |b.|} exp[od,] is convergent for

n=1
«©
all ¢ and consequently Y |a,- b,|exp [¢4,] is convergent for all ¢. Hence,
n=1

f(s) + g(s) is an entire function. Again, due to the convergence of > |0, | exp [o4,]

n=3

for all o, it follows that lim |b,| =0 and hence > |a,]||b.| exp[ol,] i.e.,

n—>w0 n=1
©

> lanb,] exp[o4,] is convergent for all ¢, which implies that f(s) % g(s) is an
fi=a]l
entire function.

Theorem 2. 0 is an additive abelian group.

Proof. Let h(s)= icn exp [sh,]€ 2. Tvidently, f(s) -+ g(s) = g(s) =+ f(s)

=1

and f(s) -+ [g(s) + M(s)] = [f(s)+-9(s)] +R(s); @(s) = > anexp[sh,], where a,=0

=l

for all n,is the null element of 2. Since Y a,exp[si,] is entire implies

fie=]
o
> (—ay)exp [s,] is entire, the negative element of
=1

f(s) = 23 ay,exp [s,] is (— a,) exp [sA,]e 2.

n=] n

T

Hence, using Theorem 1, Q is an additive abelian group.
Theorem 3. £ is « normed complex linear space.

Proof. First we show that £ is a linear space over the field ¢ of complex

numbers. We define scalar multiplication as follows: z-f(s) = > wa, exp [si,],
=1

zee. Bvidently, z-f(s) e 2.
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We can easily verify the following:

1) 1-1(s) =1(s),
(i) (@+y)fs) =afs)+y-/s),
(iil) (@) -f(s) = a{y-1(s)},

(iv) @ {f(s) + g(s)} = a-f(s) + = g(s),

where @, y€c¢ and f(s), g(s) e .
Hence, using Theorem 2, 2 is a complex linear space. Now, we define the norm
of f(s) by |f(s)] =sup |a.]. We observe that

o

(i) Ifs)]>0 and JH(s)] = 0 <= f(s) = 0;
(i) 17(s) + g(s)]| = sup |+ b | < 5UP |an] +sup |21 = [#6)] + Jo(o)][;
(i) Jo-f)] = sup |oan] = |o] sup |aa] = lo] |f(5)]-

Hence, £ is a normed complex linear space.

Remark. We observe that Q is a metric space with respect to the me-
tric d defined by d(f, 9) = |f(s)—g(s). If f € Q and »> 0, the open ball
with centre at f and radius » is the set {g€ Q: d(f, g) < r}. Now, if 4 is the
collection ¢f all sets Fc £ which are arbitrary unions of open balls, then A
is a topology in £ and Q2 becomes a topological space.

Theorem 4. 02 is a complex Banach space.

Proof. Let the sequence {(f,(s)}, where f,(s)= 3 a,.exp [s1.]Jef for
n=l

p=1,2,.., be a Cauchy sequence. Then for every &> 0 there exists a po-
sitive integer m such that |[f,(s)— fu(s)]| <e for p, g>m. Hence, sup |a, ,—

n

— @y | <& for p, ¢>m. This implies

(1.3) |ty n— Gy n| < & for p,g>m and for all »n.

We fix » and consider the sequence a; ,, @y 5, .... Due to (1.3) this sequence
will converge to a limit, say, ¢,. We now form the Dirichlet series f(s) =

= > a,exp [si,]. From (1.3) we have

Nl

(1.4) |a,,,’,,~— | <e for p>m and for all n.
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Hence

(1.5) tan | < |a, .| +¢ for all n.

But Y a, exp[si,]eQ implies > |a, .| exp[ol.]is convergent for all ¢ < co.

n=1 nel
Hence, from (1.5) it follows that > |a,| exp [04,]is convergent for all ¢ < oo,
n==1
i.e., f(s) is an entire function and hence belongs to 2. From (1.4), Sup |a, ,—
2]
—a,| <e for p>m; ie., |f.(s)—f(s)]|<e for p>m. Hence, f,(s)—=f(s)ef
when p — co. Henece, using Theorem 3, £ is a complex Banach space.

Lemma 1. 02 is a commutative ring.

Proof. We can easily verify the following properties in £2:

(1) f(s) = {gls) & h(s)} = {f(s) *g(s)} % h(s),
(i) 7(s) % g(s) = g(s) %1(s),
(i) 7(s) % {g(s) -+ h(s)} = f(s) % g(s) + f(s) % h(s),
(iv)  {f(s) + g(s)} # h(s) = f(s) % h(s) + g(s) % R(s).

Hence using Theorems 1, 2 21is a commutativering.

Lemma 2. Q is a commutative algebra over the field of complex numbers.

Proof:

z{f(s) % g(s)} =

-]

= %manbn exp [sAn] = > @, eXD [sA,] * g b, exp [sA.] = {2f(s)} #g(s) .

n=1 n=1 fi=]

Also, 3 @a,b, exp [sd.] = > a, exp [s1,] % > @b, exp [sA.] = f(s) * {wg(s)}. Hence,
=] n=1 =1

x{f(s) % g(s); = {w f(s)} % g(s) = f(s) & {wg(s)} for all f,ge R, zecc. Hence, by

Theorem 3 and Lemma 1, @ is a commutative algebra over c.

Theorem 5. Q2 is a commutaitve Banach algebra.
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Proof. |f(s)xg(s)] = sup |@abn 1<&up || sup [bn] = 17(s)]19(s)]. Hence,

by Theorem 4 and Lemma 2, 2is a commutthe Banach algebra.

Finally, I wish to thank Dr. M. K. Sen for his helpful suggestion in the
preparation of this paper.
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Summary.

Let £ be the class of entire Dirichlet series having the same sequence of
exponents. We define two compositions, addition and starmultiplication in 02
in a suitable manner. We then show that £2 is a commutative Banach algebra.







