B. C. CHAKRABORTY (*)

On the algebraic and topological structure of a class of entire Dirichlet series. (**)

1. - Introduction.

Let Ω be the class of entire Dirichlet series having the same sequence, $\{\lambda_n\}$, of exponents. Let

(1.1)
$$f(s) = \sum_{n=1}^{\infty} a_n \exp[s\lambda_n],$$

(1.2)
$$g(s) = \sum_{n=1}^{\infty} b_n \exp[s\lambda_n] \qquad (s = \sigma + i\tau),$$

be two elements of Ω . Here we tacitly assume that $0 \le \lambda_1 < \lambda_2 < ... < \lambda_n \to \infty$. We now define two compositions, namely, addition (+) and star-multiplicacation (*) in the set Ω in the following manner:

$$f(s) + g(s) = \sum_{n=1}^{\infty} (a_n + b_n) \exp[s\lambda_n],$$

$$f(s) * g(s) = \sum_{n=1}^{\infty} a_n b_n \exp[s\lambda_n].$$

The object of this paper is to study the algebraic and topological structure of Ω . In this paper we shall follow Rudin's [1] definition of Banach algebra and not of Simmons' [2].

^(*) Indirizzo: Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 19, India.

^(**) Ricevuto: 15-I-1974.

[2]

2. – Theorem 1. The set Ω is closed with respect to the two compositions + and *.

Proof. Let f(s), $g(s) \in \Omega$. Since both f(s) and g(s) are entire, they are bounded in $\sigma \leqslant x$ for any $x < \infty$ and the series

$$\sum_{n=1}^{\infty} |a_n| \exp \left[\sigma \lambda_n\right], \qquad \sum_{n=1}^{\infty} |b_n| \exp \left[\sigma \lambda_n\right]$$

are convergent for all σ . Hence, $\sum_{n=1}^{\infty} \{|a_n| + |b_n|\} \exp[\sigma \lambda_n]$ is convergent for all σ and consequently $\sum_{n=1}^{\infty} |a_n + b_n| \exp[\sigma \lambda_n]$ is convergent for all σ . Hence, f(s) + g(s) is an entire function. Again, due to the convergence of $\sum_{n=1}^{\infty} |b_n| \exp[\sigma \lambda_n]$ for all σ , it follows that $\lim_{n\to\infty} |b_n| = 0$ and hence $\sum_{n=1}^{\infty} |a_n| |b_n| \exp[\sigma \lambda_n]$ i.e., $\sum_{n=1}^{\infty} |a_n b_n| \exp[\sigma \lambda_n]$ is convergent for all σ , which implies that f(s) * g(s) is an entire function.

Theorem 2. Ω is an additive abelian group.

Proof. Let $h(s) = \sum_{n=1}^{\infty} c_n \exp[s\lambda_n] \in \Omega$. Evidently, f(s) + g(s) = g(s) + f(s) and f(s) + [g(s) + h(s)] = [f(s) + g(s)] + h(s); $\varphi(s) = \sum_{n=1}^{\infty} a_n \exp[s\lambda_n]$, where $a_n = 0$ for all n, is the null element of Ω . Since $\sum_{n=1}^{\infty} a_n \exp[s\lambda_n]$ is entire implies $\sum_{n=1}^{\infty} (-a_n) \exp[s\lambda_n]$ is entire, the negative element of

$$f(s) = \sum_{n=1}^{\infty} a_n \exp[s\lambda_n]$$
 is $\sum_{n=1}^{\infty} (-a_n) \exp[s\lambda_n] \in \Omega$.

Hence, using Theorem 1, Ω is an additive abelian group.

Theorem 3. Ω is a normed complex linear space.

Proof. First we show that Ω is a linear space over the field c of complex numbers. We define scalar multiplication as follows: $x \cdot f(s) = \sum_{n=1}^{\infty} x a_n \exp{[s\lambda_n]},$ $x \in c$. Evidently, $x \cdot f(s) \in \Omega$.

We can easily verify the following:

$$(i) \quad 1 \cdot f(s) \qquad = f(s) \,,$$

(ii)
$$(x+y)\cdot f(s) = x\cdot f(s) + y\cdot f(s)$$
,

(iii)
$$(xy) \cdot f(s) = x\{y \cdot f(s)\},$$

(iv)
$$x \cdot \{f(s) + g(s)\} = x \cdot f(s) + x \cdot g(s)$$
,

where $x, y \in c$ and $f(s), g(s) \in \Omega$.

Hence, using Theorem 2, Ω is a complex linear space. Now, we define the norm of f(s) by $||f(s)|| = \sup |a_n|$. We observe that

(i)
$$||f(s)|| \ge 0$$
 and $||f(s)|| = 0 \Leftrightarrow f(s) = 0$;

(ii)
$$||f(s) + g(s)|| = \sup_{n} |a_n + b_n| \leqslant \sup_{n} |a_n| + \sup_{n} |b_n| = ||f(s)|| + ||g(s)||;$$

(iii) $||x \cdot f(s)|| = \sup_{n} |xa_n| = |x| \sup_{n} |a_n| = |x| ||f(s)||.$

(iii)
$$||x \cdot f(s)|| = \sup |xa_n| = |x| \sup |a_n| = |x| ||f(s)||$$

Hence, Ω is a normed complex linear space.

Remark. We observe that Ω is a metric space with respect to the metric d defined by d(f,g) = ||f(s) - g(s)||. If $f \in \Omega$ and r > 0, the open ball with centre at f and radius r is the set $\{g \in \Omega \colon d(f,g) < r\}$. Now, if Λ is the collection of all sets $E \subset \Omega$ which are arbitrary unions of open balls, then Λ is a topology in Ω and Ω becomes a topological space.

Theorem 4. Ω is a complex Banach space.

Proof. Let the sequence $\{f_p(s)\}\$, where $f_p(s) = \sum_{n=1}^{\infty} a_{p,n} \exp[s\lambda_n] \in \Omega$ for $p=1,2,\ldots$, be a Cauchy sequence. Then for every $\varepsilon>0$ there exists a positive integer m such that $||f_p(s) - f_q(s)|| < \varepsilon$ for $p, q \ge m$. Hence, $\sup |a_{p,n} - f_q(s)| < \varepsilon$ $-a_{q,n}| < \varepsilon$ for $p, q \ge m$. This implies

(1.3)
$$|a_{r,n} - a_{q,n}| < \varepsilon$$
 for $p, q \ge m$ and for all n .

We fix n and consider the sequence $a_{1,n}, a_{2,n}, \ldots$ Due to (1.3) this sequence will converge to a limit, say, a_n . We now form the Dirichlet series f(s) = $= \sum_{n=1}^{\infty} a_n \exp [s\lambda_n].$ From (1.3) we have

$$(1.4) |a_{p,n}-a_n|<\varepsilon \text{for } p\geqslant m \text{ and for all } n.$$

Hence

$$|a_n| < |a_{m,n}| + \varepsilon \quad \text{for all } n.$$

But $\sum_{n=1}^{\infty} a_{m,n} \exp{[s\lambda_n]} \in \Omega$ implies $\sum_{n=1}^{\infty} |a_{m,n}| \exp{[\sigma\lambda_n]}$ is convergent for all $\sigma < \infty$. Hence, from (1.5) it follows that $\sum_{n=1}^{\infty} |a_n| \exp{[\sigma\lambda_n]}$ is convergent for all $\sigma < \infty$, i.e., f(s) is an entire function and hence belongs to Ω . From (1.4), $\sup_{n=1}^{\infty} |a_{p,n}-a_n| < \varepsilon$ for $p \geqslant m$; i.e., $\|f_p(s)-f(s)\| < \varepsilon$ for $p \geqslant m$. Hence, $f_p(s) \Rightarrow f(s) \in \Omega$ when $p \to \infty$. Hence, using Theorem 3, Ω is a complex Banach space.

Lemma 1. Ω is a commutative ring.

Proof. We can easily verify the following properties in Ω :

(i)
$$f(s) * \{g(s) * h(s)\} = \{f(s) * g(s)\} * h(s),$$

(ii)
$$f(s) * g(s) = g(s) * f(s),$$

(iii)
$$f(s) * \{g(s) + h(s)\} = f(s) * g(s) + f(s) * h(s),$$

(iv)
$$\{f(s) + g(s)\} * h(s) = f(s) * h(s) + g(s) * h(s).$$

Hence using Theorems 1, 2 Ω is a commutative ring.

Lemma 2. Ω is a commutative algebra over the field of complex numbers. Proof:

$$x\{f(s) * g(s)\} =$$

$$= \sum_{n=1}^{\infty} x a_n b_n \exp\left[s\lambda_n\right] = \sum_{n=1}^{\infty} x a_n \exp\left[s\lambda_n\right] * \sum_{n=1}^{\infty} b_n \exp\left[s\lambda_n\right] = \left\{xf(s)\right\} * g(s) .$$

Also, $\sum_{n=1}^{\infty} xa_nb_n \exp[s\lambda_n] = \sum_{n=1}^{\infty} a_n \exp[s\lambda_n] * \sum_{n=1}^{\infty} xb_n \exp[s\lambda_n] = f(s) * \{xg(s)\}$. Hence, $x\{f(s)*g(s)\} = \{xf(s)\} * g(s) = f(s) * \{xg(s)\}$ for all $f, g \in \Omega$, $x \in c$. Hence, by Theorem 3 and Lemma 1, Ω is a commutative algebra over c.

Theorem 5. Ω is a commutative Banach algebra.

Proof. $||f(s)*g(s)|| = \sup_{n} |a_n b_n| \leqslant \sup_{n} |a_n| \sup_{n} |b_n| = ||f(s)|| ||g(s)||$. Hence, by Theorem 4 and Lemma 2, Ω is a commutative Banach algebra.

Finally, I wish to thank Dr. M. K. Sen for his helpful suggestion in the preparation of this paper.

References.

- [1] W. Rudin, Real and complex analysis, Mc Graw-Hill, New York 1966.
- [2] G. F. Simmons, Topology and modern analysis, Mc Graw-Hill, New York 1963.

Summary.

Let Ω be the class of entire Dirichlet series having the same sequence of exponents. We define two compositions, addition and starmultiplication in Ω in a suitable manner. We then show that Ω is a commutative Banach algebra.

* * *

