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F. MeaDI (*)

On multiplication and weak multiplication modules. (**)

1. - Introduction.

In [2] the concept of multiplication module was introduced. In this paper
we continue the study of multiplication module and also introduce the concept
of a weak multiplication module, which is analogous to the concept of weak
multiplication ring {3]. Although in general a weak multiplication ring is a
multiplication ring [3], but in general, a weak multiplication module is not a
multiplication module. In section 4, the examples of weak multiplication
modules which are not multiplication modules are given. Theorem 1 of sec-
tion 3 gives a characterization of multiplication module over a Dedekind do-
main in terms of projective module. It is also shown that if M is faithful along
with the conditions of Theorem 1, then M is R-projective. In section 4, some
results on weak multiplication modules are proved.

2. = Preliminaries.

All rings considered here are commutative which possess an identity ele-
ment 10 and all modules are unital left modules. A submodule N of a mo-
dule M, which is not equal to M over a ring R is said to be a prime submodule
of M if AN,CN and N, ¢ N implies that AM C N, where 4 is an ideal of R
and N, is a submodule of M. A module M over a ring R is called a weak multi-
plication module if N C P, where N is a submodule of M and P is a prime sub-
module of M, implies that there exists an ideal A of B such that ¥ = AP.
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A ring B having a unique maximal ideal is called a quasi-local ring. A noe-
therian quasi-local ring is called a local ving. If S is any multiplicatively
closed subset of a ring R, then M, denotes the quotient module of M with
respect to §. For each E-submodule N of M, N° denotes the extension of N
in My and for Rg-submodule L of Mg, L° denotes the contraction of L in M.
If R is a domain with field of quotient K and M is an R-module, then the
rank of M is the dimension of K &, M as a vector space over K, i.e., the
rank of M is the maximum rank of free submodules of M. ¢ and Z are
the set of rational numbers and integers respectively. On the whole termi-
nology is of [}, [3], and [1].

3. - Multiplication modules.

Proposition 1. If M is a multiplication RB-module. Then a submodule
N of M is prime if and only if (N:M) is prime ideal of R.

Proof. In general, for any prime submodule N of M, (N:M) is prime
ideal of R. Conversely, suppose that (N:M) is prime ideal of . Take ALC N
such that L ¢ N, where L is submodule of M and A is an ideal of R. As M
is multiplieation module L = BM for some ideal B of R. Then AL =
=ABMCN ie. ABC(N:M), but L=BM ¢ N ie.,, B¢ (N:M). Therefore
AC(N:M), as (N:M) is prime. Hence AM CN. This shows N is prime sub-
module of M. This completes the proof.

Converse is not true in general, is clear from the following

Example. Consider any domain D which is not a field. Consider
M=M,® M, such that M, M, D. Let A be a proper ideal of D which
is not prime ideal and let 4, be the corresponding submodule of M,. Then
there exists # € M, and ae.D such that ¢ 4,, a¢ A but arxe d,. Now
aM ¢ A,. Hence 4, is not a prime submodule of M. However, a e (4,: M)
imyplies that eM,® aM,CA, = aM;=0 = a=0 so that (4,:M)=(0), a
prime ideal of D.

‘Theorem 1. If M is a multiplication module over a Dedekind domain R,
then either M is dirvect sum of cyclic R-modules or M is R-projective.

Proof. Steinitz in [4], proved that every finitely generated module over
a Dedekind domain is direct sum of cyelic modules and finitely generated tor-
sion free modules of rank one. That is M =M, ® M, @D ... ® M,, where some
M ; are eyclic and some are torsion free of rank one. As M is multiplication
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module over a Dedekind domain, by lemma 3 [2], M is finitely generated and

hence by theorem 3 [2]: R =ann(M,) 4 () ann (3,). If M, is torsion free,
it
”n
then ann (M;) =0 and therefore () ann(M;) =R, ie., M;=0 for Vj==i.
ik
Hence M = M ;. Therefore M is torsion free module of rank one. But over
a domain a finitely generated torsion free module of rank one is isomorphic
to an ideal I of RB. Now as R is a Dedekind domain every ideal of E is
E-projective. Therefore M is also R-projective. Hence either M is direct sum
of cyclic modules or 3 is R-projective. This completes the proof of the theorem.

Corollary. If M s faithful along with the conditions of Theorem 1, then
M is R-projective.

Proof. Suppose N is torsion submodule of M. Then N = AJM for some
ideal A of R. Suppose aN =0 for a(£0)e R. Then «AM =0, but M is
faithful, therefore a4 =0. As a5£0, A =0 and hence N = 0. Therefore M
is torsion free. Now by above theorem M is torsion free module of rank one
and hence R-projective. This completes the proof.

4. - Weak Multiplication Module.

The following proposition is immediate from the definition of weak multi-
plication module.

Proposition 1. The homomorphic image of a weak multiplication module
is weak multiplication module.

Proposition 2. If M is a weak multiplication R-module and S is a mul-
tiplicatively closed subset of R, then the quotient module M is weak multiplica-
tion Rg-module.

Proof. Consider any two Essubmodules N, L of Mg such that N C L
and L is prime. Then in M, N¢c L. We claim that Lc is prime submodule
of M. Suppose AK C L¢ for some ideal A of E and some submodule K of M
such that X ¢ Lc. Now as AK CL¢, then A<K:CL, but K°¢ L, therefore
Ae M CL, hence A M;CL°, i.e., AMC L. Therefore L° is a prime sub-
module of M. As M is weak multiplication module, there exists an ideal 4
of B such that N¢= AL, then Ne= AcIlc, Therefore N = A°L. Hence My
is Rsweak multiplication module. '
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Proposition 3. If M is a weak multiplication module over a noetherian
(artinian) ring R, then the class of submodules of M which are contained in a
prime submodule (which contains o prime submodule) of M satisfies mazimal
(minimal) condition.

Proof. Let P be a prime submodule of a weak multiplication module M.
Since by definition all submodules of P are of the form AP, where 4 is an
ideal of R, the result follows.

Proposition 4. If M is a module over a ring R=8@ T with 1=
=¢ 4+ f (1 ¢ and f identities of R, S and T respectively). Then a submodule P
of M is prime submodule of M iff ¢ P is prime submodule of eM and fP = fM
or fP is a prime submodule of fM and eP =eM,

Proof. Suppose P is a prime submodule of M and e¢P s<e¢M. Now
T(eM) =0, therefore T(eM)C P, as eM ¢ P, TM CP. But THM = fM; there-
fore fM C P, hence fM =fP. To show eP in prime S-submodule of e¢M.
Suppose 8, M,CeP, where S is an ideal of § and M, is a submodule of eM.
If M,¢eP then M,¢ eP @ fM = P. Therefore S;¢.M CP and hence S;eM CeP.
This shows that eP is a prime submodule of e, similarly if fM = fP, then fP
is a prime submodule of M. To show P=e¢M @ fP is prime. Take ANCP.
If N¢ P, then f{N ¢ fP, but AN C P = AfN C [P, therefore AfM CfP. Hence
AMCp. Hence P is a prime submodule of M.

Proposition 5. If M is a weak multiplication module and P and P’
are prime submodules of M such that P is stricily contained in P'. Then
P=(P:M)P'.

Proof. By definition P= AP’ for some ideal A of R. Now P'¢P
implies that AM CP, i.e. AC(P:M). Now P= AP C(P:M)P' CcP. There-
fore P = (P: M)P'. This completes the.proof.

Proposition 6. Let M be a weak multiplication module, P be a prime

submodule of M. Then there is no submodule strictly between P and AP for
any mazximal idal A of R.

Proof. Trivial.

Proposition 7. Let M be a weak multiplication module over o quasi-
local ring R, then any prime submodule N of M is cyclic.
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Proof. Let P be the maximal ideal of R. Suppose that ¥ = PN. Con-
sider any #(s=0)e N. Then Rz = AN for some ideal 4 of R. Then P(x) =
= PAN = AN = Rx. This implies that » = px for some pe P. Thus = =0,
as (L— p) is unit. This is a contradiction, hence N == PN. Choose z & N\ PXN.
Then Ry = AN. Now either A=Ror ACP. If 4C P, then Rz = AN CPN,
a contradiction. Therefore Ry = RN = N. Hence N is cyclic E-module. This
completes the proof.

Proposition 8. Any divisible uniform module over a domain R is
weak multiplication module.

Proof. Suppose N is a prime submodule of a divisible uniform module M.
Take xe M\N. Then there exists a nonzero fe R such that twe .
Now RizCN. But Rz ¢ N implies that tM C N, but tM = M ¢ N. Therefore
N =0. Hence M is a weak multiplication module. This completes the proof.

Now we give the examples of weak multiplication modules which are not
multiplication modules.

Example 1. @, is a weak multiplication module, but not a multipli-
cation module.

If N is a prime submodule of Q. Take # € Q\N. As @, is divisible there
exists an integer a(# 0) € Z such that za e N. Then RzaC N but Re¢ N =
= QaC N but Qa=@Q¢ N. Therefore N=0. Hence @, is weak multipli-
cation module. However, it is not a multiplication module.

Example 2. Let R be a local discrete valuation ring of rank one with
maximal ideal M. Consider N =R/M @ R as R-module. Then N is weak
multiplication E-module, while ¥ is not a multiplication module.

Clearly B is prime submodule of ¥. Let P be a prime submodule of N.
If P=0, then (R/M)M = (0)CP, but N.M = M ==(0). So, (0) is not a prime
submodule. Now (R/M)M = (0)C P gives either R/ M CP or NMCP, ie.,
McP.

It RIMCP,then P=R/M® (PN R) =N|/P~R|/PNR = PN Risa prime
ideal of R. So that P=R/M @ P,, P, a prime ideal of R. Suppose now
MCP and (R/IM)NP=0. Now peP implies that p =, + 7, r,e R/M and
r,€ R. Define a mapping o: P >R as o(p) =9,. Then clearly ¢ is an R-
homomorphism with kernel zero, as (RB/M) NP =0. Therefore ¢ is a iso-
morphism. Now either P~FR or P~ M. If P~ R then YTCP, T=PA
for some ideal 4 of K. Further as R is discrete valuation ring of rank one,
M is a multiplication module, P is also multiplication module. Therefore N
is a weak multiplication module. N is not a multiplication module, because
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if we take R/M, then R/ M = NT, because NI = (R/M)T® RT = (R/M)T & T.
If T=R, then NI'=N. If TCM then (BR/M)T =0 gives us NT = T with
TNR|M=0. Therefore B/M = NT for any ideal T.

The author takes the opportunity for thanking Dr. Surjeet Singh (Reader,
Department of Mathematics and Statistics, Aligarh Muslim University) for
his valunable suggestions in the preparation of this paper.
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Abstract.

4 module M over a commutative ring R s called a multiplication module if for
every pair of submodules, N and L, NCL implies N = AL for some ideal A of B.
A proper submodule P of @ module I is said to be a prime submodule of 3 if ANCP
and N ¢ P implies that AMCP, where A is an ideal of B and N is a submodule o M.
A module M is said to be weak multiplication module if N CP, where N is a submodule
of M and P is a prime submodule of M, implies N = AP for some ideal A of E.
Following are some of the main resulls: (i) If M is « muliiplication module over a
Dedekind domain R, then either M is direct sum of cyclic R-modules or M is
R-projective. (i) Any prime submodule of a weak multiplication module over a quasi-
local ving is cyelic. (iii) Amy divisible uniform module over a domain is weak multipli-
cation module.



