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On Nevanlinna’s proximity function. (**)

1. - Introduction.

Let f(2) be a meromorphic function in the entire complex plane €. Fami-
liarity with the definitions of basic quantities of Nevalinna’s theory of mero-
morphic funetions: m(r, f), m(r, 1/f), nir, f), nir, 1/f), N, ), Nir, 1/f), T, f)
ete. is assumed (see [2], [5]). We also write

m(r) = m(r, f) -+ m(r, 1/f)
and
n(t)
mm=fﬁﬂt (p=10,1,2,3,..),
[
where

n(r) = n(r, f) + n(r, 1[f)

and it is assumed, without any loss of generality, that n(r) =0, for r<1.

Our aim in this paper is to investigate the growth of m(r) with regard to
n(r), N(r), No(r) and 77 where g(r) is a proximate order of f(z), o being the
usual order of f(2) in terms of T'(r, f). Section 2 deals with the statement and
discussion of the main results, whereas the remaining sections have been de-
voted to the proofs of the main results.

(*) Indirizzo degli Autori: Faculty of Mathematics, University of Delhi, Delhi-7,
India.
(**) Ricevuto: 6-VI-1972.
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2. - Statement and discussion of results.

Recently in [3], Jain and Kamthan have proved, for a meromorphic fune-
tion of order g (0 << p<1), that

<

m{r)

(2.1) Limint Sy <4,
where
(2.2) Afo) = [o(1— )" + 2(1 — o) *cot tmo.

We prove here the following

TheQI'em 1. Let f(z) be a meromorphic function of non-integral order o,
(0 <<p<< o). Then

. mr)
(2.3) Lim inf "

r—>0

< o0

The above result is not necessarily true for functions of integral order. Con-
sider for example (see [2], p. 7) the function f(2) = exp [¢]. Then m(r) = (2r/n)
for all »>0 and n(r) = 0 for all ». Hence the left-hand expression in (2.3)
is infinite. _

Further, let us consider an example of a funetion which possesses poles.
Take for instance f(z) = I'(z). It is of order 1 and n(r)~ N(r)~ r; m(r) ~
~rlogs and so Theorem 1 is not true in this case also.

Further, we have

Theorem 2. Let f(z) be a meromorphic function of non-integral order g
(p<o<p-+1, p being any integer) and proximate order o(r). Then

(2.4)  Lim Sup ?i—? <Plplo—p)t+ @+ 1 — o) {p +1 420 cot (o — p)}] ,

where § is defined as

N(@r)

Lim 50

r—>ro

An immediate corollary of this theorem is the following
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Corollary 1. For p<<g<<p+1,
. m(r) .
(2.5)  LimSup ) <ple—p)*+ (p+1—0)'[p+ 1+ 20 cot 3a(o— p)].
The corollary follows immediately, by using Theorem 2, since

Lim S m(r) Lim S m{r)ret) ‘54 Lim 8 m(r)
I _1)31 up SN N 7_35)1 up - N (r)fre) T ;1}12 up o -

However, if we replace N(r) by 77 N,(r) in Theorem 2, we have

Theorem 3. Under the hypothesis of Theorem 2, we have

(2.6)  LimSup ") < pe(p 41— o)1 + 2(0 — p) cot blo — p)],

r—>oc

where f* is defined as

. TPN (1) .
rIigl 7-9(7:‘) = ﬂ T oo
Corollary 2. For p<p<p-+1,
. m(7) _ : )
(2.7) Lim Sup iy <P 1= )14 2(0 — p) eot (o — p)] -

Remark 1. For functions of order o (0<<p<1) ie. for which p=0,
the results in Theorems 2 and 3,and consequently their respective corollaries
are identical.

Next, we have a striking deduction from Corollary 1 as follows

Corollary 3. For p<<o<p-+1

. m(r)
(2.8) Lim Sup

s n(r)logr

<pd{g),

where A(g) is given by (2.2).

Remark 2. The inequalities in (2.5), (2.7) and (2.8) cannot be removed.
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Consider, for instance, (see [2], p. 100) the funetion

fe) =TI (1+ ;)

n=1

Then m(r) == 2rt, n(r)~rt, N(r)~ 2t o==1/2.

Finally, we separate meromorphic functions of non-integral order into two
classes. According to Nevanlinna [5], a meromorphie function f(2) of positive
non-integral order g is of convergence or divergence class according as

<

(2.9) ﬁ"e‘loz(r) dr

converges or diverges.

Now, we have

Theorem 4. The meromorphic function of non-integral order o is of con-
vergence or divergence class according as

(2.10) E“Q"lm(r) dr

converges or diverges. ,

In the proofs of our theorems we shall very much rely on the following
result due to Kamthan ([4], p. 40), which is in fact based on an estimate of
m(r) obtained earlier by Edrei and Fuchs ([1], p. 300).

Lemma A[4]. Let f(2) be a meromorphic function of non-integral order p
and let p be an infeger, p<<o<p --1. Then

(2.11)  m(r) <r1’ffw"1’*1n(m) do + 7‘1’+1j'°:;—1"2n(a:) dx -
0 r

T
[ee]

+§: > (2m+ 1)1 [w)—zm f gmrrEm—ln(x) de

m=0
0

- prame f x—r=2m=3 p(g) dw] + 0(r») .
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3. « Proof of Theorem 1.

‘We have to consider two cases according as f(2) is of convergence clags or

not. In either case p<o<<p-+1 and [oon(r)dw converges for a>p-41
and diverges for a<<g -+ 1.
It is sufficient to prove that it is impossible to have

(3.1) w(r)<em{r), r>rle), &>0.

Choose o with ¢ +1<a<<p -+ 2 and such that [z~en(z)dar converges (it
converges for o> p + 1 in both cases).

Multiplying (3.1) by r—=, integrating over (R, co) and changing the order
of integration in the resulting integrated integrals, we get

«© «© 1
(3.2) fron(r) dr<e fre-edr fo-r-1n(z) do -+
y:3 B 0

+ g fre-ott dr f-r-2n(z) dz +-
R r

<«

4 2 d
+ ¢ > (@m+ 1)t [ f yP=im=a dy fm*”“m—ln(m) dw -+
L]

me=0
R

(-

-+ frp+2m+2—oc dr f w—p—-zm—sn(w) dw] _[_O( rr—o d/,-),
B
B r

@

(3.3) f o) dr < ol el = > (@mA- 1) (Tt L)+ L (sa)

R

Now by changing the order of integration in (3.2), we notice that

R - @© @©
I, = [z-»1n(z) dz fr—= dr + [o-r-1n(z) do fr-=dr
0 R B X
B ©
= (¢ — p — 1)1 Re+1~ [gr=ip(p) dz + (¢ — p — 1)~ fo—*n(z) dz;
0 R

I = [zr2p(z) dz frevi-adr < (p -+ 2 — &)t [zon(x) do;
B R p:]
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w0

R o (=
I, = [g—rrem-1n(z) dg frr-2m-a dr + [a=rrem—ln(z) de [re-2m-edr
o R R R
i3 «
<(2m—p— 1+ o) Rrot1 fpr-in(z) de 4 (2m—p — 1 + o)~ fo—en(z) do;
0 R

I, = [g—r-2m=sp(p) Ao freremte—o dr < (2m -+ p -+ 3 — o)~ fr-on(z) da;
R R R

Is< 0(Rn+1—a) .

Therefore, (3.3) implies that
(3.4)  Jr-on(r) dr<ed(w, p)fz—en(z)de +
R B

]
+ eB(a, p) RP+-o [z—-1n(z) dw + O(Rr+1-9),
(4]
where

A p) = @=p =1+ (02— 04 2 3 @m 1)

1 1
X + ,
2m—p—1+a 2m +p—oa+ 3

and

Bla, p)=(a—p— 1)+ = 3 1 :
’ Yol a & em 1) @m—p—1+a)

It is easily seen that A(o, p) < oo and B(«, p) << co. Therefore, by choosing
£<<1/2A(x, p) and collecting the terms in (3.4), we get

(3.5) Lir-en(r)dr<eBloy p R”Tl'afm“”“ln(w) dz -+ O(Rr+1-2) ,
R

In case f(z) is of divergence class (holding R fixed), let o« — g -+ 1, the left-
hand side of (3.3) becomes infinite, while its right hand side approa,ches a
finite limit. So (3.1) leads to a contradiction.
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In case f(z) is of convergence class, we may take o= g+ 1, since n(r)
increases, (3.5) implies

In(R) g Re<eRoe | {(g—p)i+ = > 1 } X
£ [ =~ & T e (2'}’)1, —+— 1) (2’”1:—]) -+ Q)

R

P f P~ p(x) dw] - O(R-e) ,

1

and sinee this holds for large enough R, for every positive ¢, we have
r
n(r) = o[r? [g~r1n(w) dx] .
1

Since [r-7an(r)dr diverges for 1<<a<<o—p -+ 1, for such «, we have
as I — co

f;“l’—“ n(r) dr =0[ er““ dr f':v"”"l n(zx) da]
=0[ f;c“”-l n(z) do fl;"“ dr]= O[_fgc*P““ n(x) da],

a contradiction. Hence (2.3) follows.

4, - Proof of Theorem 2.

Since n(z)de = xdN(x) almost everywhere in [0, ], the result in the Lem-
ma A may be rewritten as

(4.1) m(r) <pr1’_[2v—1'—11\*(90) dw 4+ (p -+ 1)7‘”“[?0—?‘21\7(00) dx

r
o

4 .
4 - z (2m L+ 1)1 [(p — Q)2 J a*»=r-1 N (z) da
7T

M=

o

+ (2,m + P + 2),,.2m+17+2 f$—2nz—p—3 N(w) dm] + 0(7«10)

P

=Lt L4 - S Emb 1P L4 007) (say)

Mme=0
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From the hypothesis, we have f—e<< N(#)[re0 < f 4 & for > 1y = 1,(g),
£> 0. Therefore :

Lo (B + e)pr foe-0-1d - 047~ (B + £)plo — p)re)+ 04)
and
L (B &)@ + 1) a2 o (B - e)(p -+ 1)(p + 1 — )30

Also for m<p/2

Is< (ﬁ + 8)(p o 2m) 7~p—2mfa;9(z)«17+2m——1 da + O(,'-:D—2m) —~

~(B+ &)@ —2m)(o — p + 2m) 11 O(r=2m),

and for m>p/2
Ta<— (B — &)(2m — p)rv=mn [aed—r+2m=1 Gy |- O (p7=2m) ~

~—(f — e} 2m — p)o — p -+ 2m)~Lyel) L O(rr2m)

Furthermore for all m>0

L (B+ 6)(p + 2 2)rotmse fosor-tns g
~ (B4 e)(p 4 2m -+ 2)(p + 2m -+ 2 — g)Hre ).
Hence for m < p/2
I+ L<(B+ )(p— 2m)(g— p -+ 2m)=t +
+ (P + 2m + 2)(p + 2m + 2 — @) rel)  O(r72"),
whereas for m>p/[2
I+ T<— (B— e)(@m— p)(e— P -+ 2m)3re) +

+ (B + &) (p + 2m + 2)(p + 2m— 20)72rel) + O(72"7).



9 ON NEVANLINNA'S PROXIMITY FUNCTION 91

Using the above estimates (4.1) gives

<B+eplo—pt+PFH+ap+Dp+1—0)+

+ 2 (2m - D)+ e)(p — 2m)(o — p + 2m)~?

T m<pf2

+ (B4 o)(p + 2m+ 2)(p + 2m+ 2 — 0) 4 O]+

+ = (S EmeE 1PUB - e)p - 2m - 2)(p - 2m 2 — ) —

— (B—&)2m — p)(o — p+H2M) I+ OG-0 (r>7),

which implies

Lim Sup ") <f [ (0= )+ P+ (P +1—0)* +

>0

8o i 1 ]
T T o (2M - O—P)(sz +p+2—0)

=f [ (e—py'+ @+ +1—-0r 1+ 2 (p+1— o)

o @ { 1 1 H
,Zo \m+ (e—p)2 (m+1)—(e—p)/2
= flplo—p)*+@+1—0o)p+ 1+‘>ocot1 (e—p)].

Hence the theorem is established.

5. = Proof of Theorem 3.

From the definition of N (r), we note that n(z)dr = z?*1dN,(z), almost
everywhere in [0, #]. Now using the arguments of Kamthan (see [4], p. 38)
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the Lemma A gives

(=]

m(r) < el f @ No(x)dw +

™

23 emt1x

T et

X [____ Q,m.rp—QmJ‘mZm—l Z\Tp (CU) da +
[}
+ (2m + 2)griemte fgmn=s N (z) da] 4 O (),

4 «©
(5.1) m(r) = Lo+ = 3 @m-+ 1) [Ty + L]+ 007)  (say) :

m=0
From the hypothesis, we have

.pN 7
! 7-9(’;9 <pEte (r>mnle),e>0).

fE—e<

Now computing along the lines of Theorem 2, we have
Lo<(B*+e)(p +1— o)71ret,
I, <O(rrm) — 2m(f* — g)(o— p -+ 2m)~1yel?),
Tu< (B*+ &)(2m + 2)(p + 2m -+ 2 — ) 1yel),

and hence the theorem follows.

6. - Proof of Theorem 4.

To prove this, it is enough to show that convergence of

©

o«
Jren(r)dr <> convergence of [r-e-1J,(r)dr,

where Ji(r), (k=1,2, 3, 4, 5) stands for the kth term in the right hand expres-
sion in (2.11). Clearly

Jre1d,(r) dr = [zr-1n(@) do fretr-1dy = (0 —p)ytfa—ein(z)de,
o 0 x 0
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and
Jree=1dy(r) dr = [z—r-2n(z) dz [rr~e dr
R R B

= (p + 1 — o) fo~o-'n(x) dv — Rri-e [g-r—2n(x)dz] .
B R

Therefore, (6.1) implies
(I — Rrti=e)(p + 1 — o) fme-1n(z) da <<
R
<[Jretd,(r)dr < (p + 1 — o) fo—e-1n(z)dw,
B R

since o+ 1<<p + 2. Also, we have

b 4 - -] .-
j 7-—()—1(]3(7.) dr = :l z (2m + 1)—1 fw—-p-{-‘zrn—l n(x) da f pr—e—zm—1 Jdp
b o ; :
= 8, foe-in[z) dz
o
and
4 w
f ety (r)dr =~ 3 (2m+ 1)~ fm-”—2m—3n(m) do f re-etimil dr,
T
R ° R R
4 ©
(6.2) f re i () dr = - > (2m 4 1) 2m 4-p — o+ 2)1x
2 m=0
Y [fm—e—ln(x) do — Rmir-ets f a2m—r=3p(x) dw},
R B
where

4 = 1
Sl:%,go @m + 1)@m + g—p)

It is easily seen, from (6.2), that

8, [we—tn(w) de < fre-1d(r) dr < S, fz-e-1n(x) ds
¥4 R

R
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where
o 1 — R2m+p—0+2 ot 1
By = mz'-so (2m +1)@2m +p—o +2)’ Bs :mgo (2m + 1)(2m + p—o + 2)
Also,

[re1(r) dt = O(Ro-2) .

This completes the proof of Theorem 4, sincé p<<p<<p -1, and 8;, 8, S
are convergent series.

Finally, we take this opportunity to thank Dr. P. X. Jain (University of
Delhi) for his valuable suggestions in the preparation of this paper. We are
also grateful to Professor U. N. Singh (Pro-Vice Chancellor, University of Delhi)
for his keen interest and encouragement in our research work.
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Abstract.

Certain growth relations of the Nevanlinua prowimily funciion m(r) of a meromorphic
function f(z) of non-integral order o, relative to N(r), N,(»), n(r) and re0} (o(r) being a
proximate order of f(z)), have been considered. It has been observed, by means of examples,
that these results are not mecessarily true for meromorphic functions of integral ovder.
Also, it has been shown that a meromorphic function of non-integral order ¢ is of conver-
gence or divergence class according as

-]
fr-e-tm(r)dr

converges or diverges.
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