P. K. KAMTHAN and M. GUPTA (*)

Linear homeomorphisms in the space of analytic functions in bicylinders. (**)

1. - Introduction and terminology.

Let $\mathscr C$ denote the usual complex plane and $\mathscr C^2$, the cartesian product of $\mathscr C$ with itself, equipped with the usual product topology. Let χ be the class of all functions $f\colon \mathscr C^2 \to \mathscr C$, where each f is analytic in $P(R_1,R_2)=\{(z_1,z_2)\colon |z_1|< R_1,\, |z_2|< R_2\}$ for arbitrary but fixed R_1 and R_2 such that $0< R_1$, $R_2 \leqslant +\infty$. Let us now recall the definitions and notations and the various equivalent topologies introduced on the space χ in our earlier paper [3]. We write $\delta_{mn}(z_1,z_2)=z_1^mz_2^n$. Then each $f\in \chi$ is uniquely representable by the infinite series

$$\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{mn}\delta_{mn},$$

which is uniformly and absolutely convergent on compacta in bicylinder $P(R_1, R_2)$. We denote by \mathscr{F} the topology on χ of uniform convergence on compacta in \mathscr{C}^2 and thus χ , equipped with \mathscr{F} , becomes a Fréchet space. For any function f in χ and $0 < r_1 < R_1$ and $0 < r_2 < R_2$, we employ the following notations

$$M(f;\, r_1,\, r_2) = \max_{|z_1|\leqslant r_1, |z_2|\leqslant r_2} |f(z_1,\, z_2)\,|$$

and (1)

(1.1)
$$||f; r_1, r_2|| = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |a_{mn}| r_1^m r_2^n.$$

^(*) Indirizzo: Department of Mathematics, Indian Institute of Technology, Kanpur 16 U.P., India.

^(**) Ricevuto: 2-V-1972.

⁽¹⁾ In [3], we have used the notation $p(f; r_1, r_2)$ for $||f; r_1, r_2||$.

By the application of Cauchy's fundamental inequality for several complex variables ([2], p. 49) it can be easily seen that

$$(1.2) \quad \begin{cases} M(f; r_1, r_2) \leqslant ||f; r_1, r_2|| \leqslant \frac{\varrho_1}{(\varrho_1 - r_1)} \frac{\varrho_2}{(\varrho_2 - r_2)} M(f; \varrho_1, \varrho_2) \\ \\ r_1 < \varrho_1 < R_1; r_2 < \varrho_2 < R_2 \end{cases}$$

In [3] it has been proved that the toplogy \mathscr{F} is the same as generated by $\{M(f; r_1^{(n)}, r_2^{(n)}) : n \geqslant 1\}$ or $\{\|f; r_1^{(n)}, r_2^{(n)}\|, n \geqslant 1\}$, where $0 < r_i^{(1)} < r_i^{(2)} < \ldots$ and $r_i^{(n)} \rightarrow R_i$ as $n \rightarrow \infty$; i = 1, 2. Throughout this Note we write χ to mean that χ is equipped with \mathscr{F} . For fixed r_1 and r_2 such that $r_1 < R_1$ and $r_2 < R_2$, we denote by $\chi(r_1, r_2)$, the space χ equipped with the topology generated by the norm $\|\ldots; r_1, r_2\|$.

Now, let us consider a double sequence $\{\alpha_{mn}\}$ in the space χ . We call a sequence $\{\alpha_{mn}\}$ to be *linearly independent* if

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} \alpha_{mn} = 0 \Rightarrow a_{mn} = 0 \qquad (m = 0, 1, ...; n = 0, 1, 2, ...)$$

for all sequences $\{a_{mn}\}$ of complex numbers for which the series converges. A sequence $\{\alpha_{mn}\}$ is said to span a subspace χ_0 of χ if χ_0 consists of all linear combinations of the form

$$\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{mn}\alpha_{mn},$$

where $\{a_{mn}\}$ is any sequence of complex numbers for which the series converges in χ . We call $\{\alpha_{mn}\}$ to be *basis* of a subspace χ_0 of χ if it is linearly independent and spans χ_0 . A double sequence $\{\alpha_{mn}: m, n \ge 0\} \subset \chi$ which is also a basis for a subspace χ_0 of χ is said to be a *proper base* for χ_0 if for all sequences $\{a_{mn}\}$ of complex numbers

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} \delta_{mn} \text{ converges} \iff \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} \alpha_{mn} \text{ converges .}$$

We have shown in ([3], Theorem 2.3') that if a basis $\{\alpha_{mn}\}$ is a proper basis, then

$$\lim\sup_{m+n\to\infty} \left[\frac{M(\alpha_{mn}; r_1, r_2)}{R_1^m R_2^n} \right]^{1/(m+n)} < 1$$

holds for all $r_1 < R_1, r_2 < R_2$.

The main object of this paper is to characterize the linear homeomorphic mappings from χ onto closed subspaces of χ which carry $\{\delta_{mn}\}$ into a proper basis.

2. - Characterizations.

For the proof of the main result, we shall need the following two lemmas.

Lemma 1. Let T be a linear mapping of χ into itself. Then T is continuous if and only if for each $r_1 < R_1$ and $r_2 < R_2$, there correspond a $\varrho_1 < R_1$ and a $\varrho_2 < R_2$ such that T is a continuous map from $\chi(\varrho_1, \varrho_2)$ into $\chi(r_1, r_2)$.

Proof. Let T be a continuous map, but for some $r_1 < R_1$ and $r_2 < R_2$, it does not map any $\chi(\varrho_1, \varrho_2)$ continuously into $\chi(r_1, r_2)$. This implies that we can find positive increasing sequences $\{\varrho_1^{(n)}\}$ and $\{\varrho_2^{(n)}\}$ such that $\varrho_1^{(n)} \to R_1$ and $\varrho_2^{(n)} \to R_2$ as $n \to \infty$, and also a sequence $\{f_n\}$ of functions in χ such that

(2.1)
$$||f_n; \varrho_1^{(n)}, \varrho_2^{(n)}|| \to 0,$$

$$||Tf_n; r_1, r_2|| = 1.$$

From (2.1), it clearly follows that $\{f_n\}$ converges to zero in χ ; but by (2.2) $\{Tf_n\}$ can not converge to 0 in χ . This contradicts that T is continuous map from χ to χ and the necessary part is proved.

To prove the converse, we are given that for each $r_1 < R_1$ and $r_2 < R_2$, we can find $\varrho_1 < R_1$ and $\varrho_2 < R_2$ such that T maps $\chi(\varrho_1, \varrho_2)$ continuously into $\chi(r_1, r_2)$. Let $\{f_n\}$ be a sequence in χ such that $f_n \to 0$ in the topology of uniform convergence on compacta in $\varrho(R_1, R_2)$

$$||f_n; \varrho_1, \varrho_2|| \rightarrow 0$$
 for all $\varrho_1 < R_1$ and $\varrho_2 < R_2$.

Now, this result and our hypothesis imply that

$$\| \mathit{T}\!f_n; \, r_1, \, r_2 \| \to 0 \quad \text{ for each } r_1 \! < \! R_1 \quad \text{ and each } r_2 \! < \! R_2 \; ,$$

i.e. $\{Tf_n\}$ converges to zero uniformly on compact sets. Hence, T is continuous. This completes the proof.

Lemma 2. If T is a continuous linear mapping of χ into itself and $\{\alpha_{mn}\}$ a sequence of functions in χ with $T\delta_{mn} = \alpha_{mn}$ (m = 0, 1, ...; n = 0, 1, ...), then

$$\lim \sup_{m+n\to\infty} \left[\frac{M(\alpha_{mn}; r_1, r_2)}{R_1^m R_2^n} \right]^{1/(m+n)} < 1$$

holds for all $r_1 < R_1$ and all $r_2 < R_2$. Conversely, if $\{\alpha_{mn}\}$ is a sequence of functions in χ for which condition (α) holds, then there exists a continuous linear mapping T of χ into itself such that $T\delta_{mn} = \alpha_{mn}$ (m, n = 0, 1, 2, ...).

Proof. For proving the necessary part, we fix $r_1 < R_1$ and $r_2 < R_2$. Then, by Lemma 1, we can find $\varrho_1 < R_1$ and $\varrho_2 < R_2$ such that T maps $\chi(\varrho_1, \varrho_2)$ continuously into $\chi(r_1, r_2)$.

 \Rightarrow There exists a constant K such that

$$\begin{split} \|\alpha_{mn}; \, r_1, \, r_2\| &= \|T\delta_{mn}; \, r_1, \, r_2\| \leqslant K\|\delta_{mn}; \, \varrho_1, \, \varrho_2\| = K\varrho_1^m \, \varrho_2^n \qquad (m, \, n = 0, \, 1, \, 2, \, \ldots) \,\,, \\ \\ \Rightarrow & \left[\frac{\|\alpha_{mn}; \, r_1, \, r_2\|}{R_1^m R_2^n} \right]^{1/(m+n)} \leqslant K^{1/(m+n)} \left(\frac{\varrho_1}{R_1} \right)^{m/(m+n)} \left(\frac{\varrho_2}{R_2} \right)^{n/(m+n)} \\ & \qquad \qquad (m, \, n = 0, \, 1, \, 2, \, \ldots, \, m+n \neq 0) \,\,. \end{split}$$

Choose $\alpha = \max \{\varrho_1/R_1, \varrho_2/R_2\}$. Then obviously $\alpha < 1$ and we get

$$\left[\frac{\|\alpha_{mn};\,r_1,\,r_2\|}{R_1^m\,R_2^n}\right]^{1/(m+n)} \leqslant K^{1/(m+n)}\,\alpha\;, \quad \lim_{m+n\to\infty} \left[\frac{\|\alpha_{mn};\,r_1,\,r_2\|}{R_1^m\,R_2^n}\right]^{1/(m+n)} \leqslant \alpha < 1\;.$$

Thus (α) holds.

Conversely, suppose that (a) holds and fix $r_1 < R_1$ and $r_2 < R_2$ arbitrarily. Choose $\rho < 1$ such that

$$\limsup_{m+n\to\infty} \left[\frac{\|\alpha_{mn}\,;\,r_1\,,\,r_2\|}{R_1^mR_2^n} \right]^{1/(m+n)} < \varrho < 1 \ .$$

[This follows from the inequality (1.2)].

 $\Rightarrow \|\alpha_{mn}; r_1, r_2\| \leqslant \varrho^{m+n} R_1^m R_2^n, \quad \text{for sufficiently large } m+n.$ Put $\varrho_1 = \varrho R_1$ and $\varrho_2 = \varrho R_2$. Then $\varrho_1 < R_1$ and $\varrho_2 < R_2$. We get

$$\|\alpha_{mn}; r_1, r_2\| \leqslant \varrho_1^m \varrho_2^n$$
 for sufficiently large $m+n$.

We can now find a constant K such that

(2.3)
$$\|\alpha_{mn}; r_1, r_2\| \leqslant K\varrho_1^m \varrho_2^n$$
 for $m = 0, 1, 2, ..., n = 0, 1, 2, ...$

Since any element $f \in \chi$ can be uniquely represented by

$$f(z_1, z_2) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \delta_{mn}$$
,

where the series on the right hand side converges in the topology of χ , we define a linear transformation T on χ by

$$T(f) = T\left(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \delta_{mn}\right) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \alpha_{mn}.$$

The convergence of the series $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \alpha_{mn}$ is being assured by (2.3) and the convergence (2) of the series $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \delta_{mn}$ in χ .

Moreover, from (2.3), it follows that

$$\begin{split} & \|T\delta_{mn}; \, r_1, \, r_2\| \leqslant K \|\delta_{mn}; \, \varrho_1, \, \varrho_2\| \implies \\ & \Rightarrow \|Tf; \, r_1, \, r_2\| \leqslant K \|f; \, \varrho_1, \, \varrho_2\| \quad \text{for} \quad f \in \chi \,. \end{split}$$

Thus, T is a continuous linear map from $\chi(\varrho_1, \varrho_2)$ into $\chi(r_1, r_2)$. Using Lemma 1, we conclude that T is continuous map from χ into itself. This completes the proof of the lemma.

Now, we come to prove the main result of this Note, which is contained in the following theorem:

Theorem. If T is a linear homeomorphic mapping of χ into itself, then $\{T\delta_{mn}\}$ is a proper basis in some closed subspace χ_0 of χ . Conversely, if $\{\alpha_{mn}\}$ is a proper basis in a closed subspace χ_0 of χ , then there exists a linear homeomorphic mapping T of χ into χ_0 such that $T\delta_{mn} = \alpha_{mn}$.

Proof. Let T be a linear homeomorphism of χ into itself, and let χ_0 be the range of T. Then χ_0 is closed, for if we consider a function $f_0 \in \overline{\chi}_0$, we can find a net $\{f_{\lambda}\} \subset \chi_0$ such that $f_{\lambda} \to f_0$ in χ_0 . Since T^{-1} is continuous on χ_0 , it follows that $T^{-1}(f_{\lambda}) \to T^{-1}(f_0)$ in χ .

Since χ is complete, $T^{-1}(f_0) \in \chi \Rightarrow f_0 \in T(\chi) = \chi_0 \Rightarrow \chi_0$ is closed.

⁽²⁾ Here the convergence of $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \alpha_{mn}$ is equivalent to the $\lim_{m+n\to\infty} \sup |c_{mn}| |R_1^m |R_2^n|^{1/(m+n)} \le 1$ (see [2]).

Thus χ_0 is a closed subspace of χ . Now we want to show that the sequence $\{\alpha_{mn}\}$ defined by $\alpha_{mn} = T\delta_{mn}$ is a proper basis in χ_0 . Suppose $f \in \chi_0$. Then $T^{-1}f$ belongs to χ and so

$$T^{-1}f = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \delta_{mn}$$
.

By continuity and linearity of T, it follows that

$$f = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \alpha_{mn} \Rightarrow \{\alpha_{mn}\} \text{ spans } \chi_0.$$

Using Lemma 2 and a result in [3] (Theorem 2.1), it becomes clear that $\{\alpha_{mn}\}$ is a proper basis in χ_0 because f and $T^{-1}f$ have the same coefficient sequences relative to $\{\alpha_{mn}\}$ and $\{\delta_{mn}\}$ respectively.

For the converse, let χ_0 be a closed subspace of χ having a proper basis $\{\alpha_{mn}\}$. Then by theorem 2.3'[3], condition (α) holds. By Lemma 2, there exists a continuous linear mapping T of χ into itself such that $T\delta_{mn} = \alpha_{mn}$ (m = 0, 1, 2, ...; n = 0, 1, 2, ...).

For any $\varphi \in \chi$, such that $\varphi = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \, \delta_{mn}$, we infer from the linearity and continuity of T that $T\varphi = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{mn} \alpha_{mn}$.

Therefore, T is one-to-one map of χ . Moreover it is onto because for any $\varphi \in \chi_0$, we have

$$\varphi = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} \alpha_{mn} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} T(\delta_{mn}).$$

By continuity and linearily of T, it follows that

$$arphi = T(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} \delta_{mn}) \quad ext{where} \quad \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} \delta_{mn} \in \chi \; ,$$

since $\{\alpha_{mn}\}$ is a proper base. Thuse T is a one-to-one map of χ onto χ_0 . Now χ_0 , being a closed subspace of χ , is complete and hence by a theorem of Banach ([1], p. 41, Theorem 5), T is a homeomorphism.

This completes the proof of the theorem. By the composition of mappings in the usual fashion, following result follows:

Corollary. If $\{\alpha_{mn}\}$ and $\{\beta_{mn}\}$ are proper bases for closed subspaces \mathscr{P} and Q, respectively, of χ , then there exists a linear homeomorphic mapping T

of $\mathscr P$ onto Q such that $T\alpha_{mn}=\beta_{mn}$ (m,n=0,1,2,...). Conversely, let T be a linear homeomorphic mapping of a closed subspace $\mathscr P$ of χ onto a closed subspace Q of χ and let $\{\alpha_{mn}\}$ be a proper basis in $\mathscr P$, then the sequence $\{T\alpha_{mn}\}$ is a proper basis in Q.

References.

- [1] S. Banach, Théorie des opérations linéaires, Hafner Publ. Co. N. Y. 1932.
- [2] B. A. Fuks, Introduction to the theory of analytic functions of several complex variables, AMS Translations 3, Rhode Island (1963).
- [3] P. K. Kamthan and M. Gupta, Analytic functions in bicylinders (to appear in Ind J. Pure Appl. Math.).

Summary.

Essentially this paper deals with the linear homeomorphisms obtained as a consequence of equivalent proper bases in the space of analytic functions in bicylinders equipped with the natural open-compact Fréchet topology.

* * *