P. K. JAIN and V.D. CHUGH (*)

Logarithmic proximate order and geometric means of an entire function of order zero. (**)

1. - Introduction.

For a non-constant entire function f(z) of order zero, the *L*-order (logarithmic order), ϱ^* , and the lower *L*-order, λ^* , are given as [8]:

$$\lim_{r\to\infty} \frac{\sup \log \log M(r,f)}{\inf \log \log r} = \frac{\varrho^*}{\lambda^*} \qquad (1 \leqslant \lambda^* \leqslant \varrho^* \leqslant \infty),$$

where $M(r, f) = \max_{|z|=r} |f(z)|$.

Let us define the following geometric means of f(z) for $0 < k < \infty$,

(1.1)
$$G(r) = \exp \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(r \exp (i\theta))| d\theta \right\},$$

$$(1.2) g_k(r) = \exp \left\{ \frac{k+1}{r^{k+1}} \int_0^r x^k \log G(x) dx \right\} ,$$

^(*) Indirizzo degli Autori: Faculty of Mathematics, University of Delhi, Delhi-7, India.

^(**) The work of P. K. Jain has been supported partially by the University Grants Commission, India. – Ricevuto: 21-III-1972.

and

(1.3)
$$g_k^*(r) = \exp \left\{ \frac{k+1}{(\log r)^{k+1}} \int_1^r (\log x)^k \log G(x) \frac{\mathrm{d}x}{x} \right\}.$$

The mean value (1.2) was introduced by Kamthan [4] and a number of results regarding its growth with respect to G(r) and other auxiliary functions for an entire function of order ϱ were obtained in [2], [2]₁, [4], [5]. In a recent paper [3], we have introduced a new geometric mean $g_k^*(r)$ as defined in (1.3), and various relations involving the comparative growths of G(r), $g_k(r)$ and $g_k^*(r)$ relative to each other for an entire function of order zero have been established. It has been noted therein that the L-orders and the lower L-orders of the logarithms of these means are the same. Besides, the differences in the results regarding the growths of the pairs $(G(r), g_k(r))$ and $(G(r), g_k^*(r))$ have also been observed. The object of this paper is to continue a similar type of study by introducing L-proximate orders and thereby finding out the growth of G(r) and $g_k^*(r)$. In section 2, we discuss certain preliminaries, whereas the remaining sections are devoted to our main results.

2. - Preliminaries.

It is assumed (throughout) that f(z) is a non-constant entire function of order zero. For these functions, we have

$$\varrho_1 = \text{g.l.b.} \left\{ \alpha \colon \alpha > 0 \text{ and } \sum_{n=1}^{\infty} r_n^{-\alpha} < \infty \right\} = 0,$$

where $\{r_n\}_{n=1}^{\infty}$ denotes the sequence of the moduli of the zeros of f(z). To have a more precise description of the distribution of the zeros of such functions, we define a number ϱ_1^* as

$$\varrho_1^* = \text{g.l.b.} \left\{ \alpha \colon \alpha > 0 \text{ and } \sum_{n=1}^{\infty} (\log r_n)^{-\alpha} < \infty \right\},$$

and call it the *L*-convergence (logarithmic convergence) exponent of the zeros of f(z) in analogy with ϱ_1 the convergence esponent of the zeros. Recently, the authors have proved that [3]₁:

(2.1)
$$\lim_{r \to \infty} \sup \frac{\log n(r)}{\log \log r} = \varrho_1^* \qquad (0 \leqslant \varrho_1^* \leqslant \infty),$$

where n(r) is the number of the zeros of f(z) in the disc $|z| \leq r$, and that $\varrho^* = \varrho_1^* + 1$. Also, we denote the limit inferior in (2.1) by λ_1^* and name it the lower L-convergence exponent of the zeros of f(z) in analogy with λ_1 , the lower convergence exponent of the zeros, i.e.

(2.2)
$$\lim_{r \to \infty} \inf \frac{\log n(r)}{\log \log r} = \lambda_1^* \qquad (0 \leqslant \lambda_1^* \leqslant \infty).$$

Also let

(2.3)
$$N(r) = \int_{0}^{r} \frac{n(x)}{x} dx,$$

where it is assumed, without any loss of generality, that n(r) = 0 for $r \le 1$. We define $\mu(r)$, a real-valued function, to be a L-proximate (logarithmic proximate) order if it satisfies the following conditions:

(i) $\mu(r)$ is continuous and differentiable in adjacent intervals for $r \geqslant r_0$,

(ii)
$$\lim_{r \to \infty} \mu(r) = \mu$$
 (0 < μ < ∞),

and

(iii)
$$\lim_{r \to \infty} r \cdot \mu'(r) \cdot \log r \cdot \log \log r = 0$$
,

where $\mu'(r)$ is either the right or the left-hand derivative at points where they are different.

We state below the existence theorem for the L-proximate order which can be easily proved on the lines of Levin ([6] p. 35):

Theorem A. If F(r) is any function that is positive for r>1 and satisfies the conditions:

(2.4)
$$\mu = \lim_{r \to \infty} \sup \frac{\log F(r)}{\log \log r} < \infty \qquad (\mu > 0),$$

then L-proximate order $\mu(r)$ can be chosen so that

(iv)
$$F(r) \leqslant (\log r)^{\mu(r)}$$

for $r \ge r_0$, and

(v)
$$F(r) = (\log r)^{\mu(r)}$$

for a sequence r_n (n = 1, 2, 3, ...) of values of r tending to infinity.

Further, if ν (0 < ν < ∞) be the limit inferior in (2.4), then following the lines of Shah [7] it is easy to prove the existence of lower L-proximate order $\nu(r)$ having the following conditions:

(i)' v(r) is real, continuous and differentiable in adjacent intervals for $r \geqslant r_0$,

(ii)'
$$\lim_{r \to \infty} v(r) = v$$
 $(0 < v < \infty),$

(iii)'
$$\lim_{r \to \infty} r \cdot \nu'(r) \cdot \log r \cdot \log \log r = 0$$
,

where $\nu'(r)$ is the right-hand or left-hand derivative where the two differ,

$$(iv)'$$
 $F(r) \ge (\log r)^{\nu(r)}$, for $r \ge r_0$,

and

$$(\mathbf{v})' \ F(r) = (\log r)^{\nu(r)},$$

for a sequence r_m (m = 1, 2, 3, ...) of values of r tending to infinity.

Now, computing exactly on the lines of Levin ([6], pp 33-35) one can deduce that:

- (a) $(\log r)^{\mu(r)}$ is a monotone increasing function of r, for $r > r_0$, $\mu > 0$;
- (b) for $r \to \infty$ and $0 < a \le k < b < \infty$, the asymptotic inequality

$$(1-\varepsilon)k^{\mu}(\log r)^{\mu(r)} < (\log r^k)^{\mu(r^k)} < (1+\varepsilon)k^{\mu}(\log r)^{\mu(r)}$$

holds uniformly in k;

(c) for
$$p < \mu + 1$$
, $\int_{\tau_0}^{r} (\log t)^{\mu(t) - p} \frac{\mathrm{d}t}{t} \sim \frac{(\log r)^{\mu(r) + 1 - p}}{(\mu + 1 - p)}$

and

(d) for
$$p > \mu + 1$$
, $\int_{r}^{\infty} (\log t)^{\mu(t) - p} \frac{\mathrm{d}t}{t} \sim \frac{(\log r)^{\mu(r) + 1 - p}}{(p - \mu - 1)}$.

Also, following Singh and Dwivedi [9], we can easily obtain the various properties for lower L-proximate order $\nu(r)$ analogous to (a)-(d) of $\mu(r)$.

3. - Comparative growth of $\log G(r)$ and $\log q_{\nu}^*(r)$.

Theorem 3.1. If f(z) be an entire function of L-convergence exponent ϱ_1^{\bullet} $(0 < \varrho_1^{\bullet} < \infty)$ and lower L-convergence exponent λ_1^{\bullet} $(0 < \lambda_1^{\bullet} < \infty)$, then

(3.1)
$$\liminf_{r\to\infty} \frac{\log g_k^*(r)}{\log G(r)} \leqslant \frac{k+1}{\varrho_1^*+k+2},$$

and

(3.2)
$$\limsup_{r \to \infty} \frac{\log g_k^*(r)}{\log G(r)} \geqslant \frac{k+1}{\lambda_1^* + k + 2}.$$

Proof. It is known that (see [3], theorem 1)

(3.3)
$$\lim_{r \to \infty} \frac{\sup_{r \to \infty} \frac{\log \log G(r)}{\log \log r}}{\lim_{r \to \infty} \frac{\varrho_1^* + 1}{\log \log r}} = \frac{\varrho_1^* + 1}{\lambda_1^* + 1}.$$

Set $\varrho_1^* + 1 = \mu$ and $\lambda_1^* + 1 = \nu$. Since (3.3) is satisfied and $1 < \nu$, $\mu < \infty$, there exist a *L*-proximate order $\mu(r)$ and a lower *L*-proximate order $\nu(r)$ for the function $\log G(r)$ satisfying the conditions (i)-(v) and (i)'-(v)' respectively in section 2 where F(r) is replaced by $\log G(r)$.

Now, from (1.3) we have

$$\begin{split} \log \, g_k^*(r) &= \frac{k+1}{(\log r)^{k+1}} \int\limits_1^r (\log x)^k \, \log \, G(x) \frac{\mathrm{d} x}{x} \leqslant \\ &\leqslant O \big((\log r)^{-k-1} \big) \, + \, \frac{k+1}{(\log r)^{k+1}} \int\limits_{r_0}^r (\log x)^{\mu(x)+k} \, \frac{\mathrm{d} x}{x} \sim \, \frac{(k+1)(\log r)^{\mu(r)}}{(\varrho_1^* + k + 2)} \, (1 + O(1)), \\ r &\geqslant r_0 = \frac{(k+1)\log G(r)}{(\varrho_1^* + k + 2)} \, (1 + O(1)), \end{split}$$

for $r = r_n \to \infty$ as $n \to \infty$. Hence, (3.1) follows.

Similarly, making use of the lower L-proximate order $\nu(r)$ instead of $\mu(r)$, (3.2) is obtained.

4. - Growth of $\log G(r)$ and $\log g_k^*(r)$ relative to n(r).

Theorem 4.1. Under the hypothesis of theorem 3.1, we have

(4.1)
$$\liminf_{r \to \infty} \frac{\log G(r)}{n(r) \log r} \leqslant \frac{1}{\varrho_1^* + 1},$$

(4.2)
$$\limsup_{r\to\infty} \sup \frac{\log G(r)}{n(r)\log r} \geqslant \frac{1}{\lambda_1^* + 1},$$

(4.3)
$$\lim_{r \to \infty} \inf \frac{\log g_k^*(r)}{n(r) \log r} \leqslant \frac{k+1}{(\varrho_1^* + 1)(\varrho_1^* + k + 2)},$$

and

(4.4)
$$\lim_{r \to \infty} \sup \frac{\log g_k^*(r)}{n(r) \log r} > \frac{k+1}{(\lambda_1^* + 1)(\lambda_1^* + k + 2)}.$$

Proof. In view of (2.1), (2.2) and $0 < \lambda_1^*$, $\varrho_1^* < \infty$, there exist a L-proximate order $\varrho_1^*(r)$ and a lower L-proximate $\lambda_1^*(r)$ relative to n(r) satisfying the conditions (i)-(v) and (i)'-(v)' respectively in section 2 where F(r) is replace by n(r).

Now, by Jensen's theorem (see Boas [1] p. 2)

(4.5)
$$\log G(r) = O(1) + \int_{r_0}^{r} \frac{n(x)}{x} dx \leq O(1) + \int_{r_0}^{r} (\log x)^{\varrho_1^*(x)} \frac{dx}{x} \sim \frac{(\log r)^{\varrho_1^*(r)+1}}{(\varrho_1^*+1)} \underset{(r \geq r_0)}{=} \frac{n(r) \log r}{\varrho_1^*+1},$$

for a sequence $r = r_n \to \infty$ as $n \to \infty$, so (4.1) is proved. Similarly, making use of $\lambda_1^*(r)$ instead of $\varrho_1^*(r)$, (4.2) follows. Further, for $1 < r_0 < r$, we have

$$\log g_k^*(r) = O\left((\log r)^{-k-1}\right) + \frac{k+1}{(\log r)^{k+1}} \int_{r_0}^r \log G(x) \ (\log x)^k \frac{\mathrm{d}x}{x} \ .$$

Therefore, in view of (4.5), we see that

$$\log g_{k}^{*}(r) \leq O\left((\log r)^{-k-1}\right) + \frac{k+1}{(\log r)^{k+1}} \int_{r_{0}}^{r} \frac{(\log x)e_{1}^{*}(x)+k+1}{e_{1}^{*}+1} \frac{\mathrm{d}x}{x}$$

$$\sim \frac{(k+1)\left(\log r\right)e_{1}^{*}(r)+1}{(e_{1}^{*}+1)\left(e_{1}^{*}+k+2\right)} \left(1+O(1)\right) = \frac{(k+1)n(r)\log r}{(r_{0}^{*}+1)\left(e_{1}^{*}+k+2\right)} \left(1+O(1)\right),$$

for $r = r_m \to \infty$ as $m \to \infty$. Consequently, (4.3) is established. The inequality (4.4) can similarly be disposed on by using $\lambda_1^*(r)$ instead of $\varrho_1^*(r)$.

5. - Growth of log G(r) and log $g_k^*(r)$ relative to an auxiliary function involving L-proximate order.

Let f(z) be an entire function having L-order ϱ^* ($\varrho^* < \infty$) and L-proximate order $\varrho^*(r)$. Further, let

$$\varphi(r) = rac{k+1}{(\log r)^{k+1}} \int\limits_1^r (\log x)^k A(x) \, arrho^*(x) \, rac{\mathrm{d} x}{x} \,, \qquad A(x) \equiv \log G(x) \;.$$

Then $\varphi(r) \sim \varrho^* \log g_k^*(r)$ as $r \to \infty$. Define:

$$\lim_{r\to\infty} \, \frac{\sup}{\inf} \, \frac{\varphi(r)}{\psi(r)} = \frac{\alpha}{\beta} \,, \qquad \qquad \lim_{r\to\infty} \, \frac{\sup}{\inf} \, \frac{A(r)}{\psi(r)} = \frac{\gamma}{\delta} \,,$$

where

$$\psi(r) = \exp \int\limits_{c} \frac{\varrho^*(x)}{x \log x} dx, \quad c > 1.$$

Now, we prove:

Theorem 5.1.

(5.1)
$$\alpha \leqslant \frac{(k+1)\,\varrho^*\gamma}{(\varrho^*+k+1)},$$

$$\beta \leqslant \varrho^* \, \delta \left(\frac{\delta}{\gamma} \right)^{(k+1)/\varrho^*} \left\{ \left(\frac{\gamma}{\delta} \right)^{(k+1)/\varrho^*} - \frac{\varrho^*}{\varrho^* + k + 1} \right\},$$

$$(5.3) \alpha \geqslant \frac{(k+1)\varrho^*\gamma}{(\varrho^*+k+1)} \left\{ \frac{\varrho^*\gamma}{\gamma(\varrho^*+k+1) - \delta(k+1)} \right\}^{\varrho^*/(k+1)},$$

and

$$\beta \geqslant \frac{(k+1)\varrho^*\delta}{(\varrho^*+k+1)}.$$

To prove this theorem, the following intermediate lemma is required:

Lemma. For $0 \leqslant \eta < \infty$:

(i)
$$\int_{r_0}^r (\log x)^{k+1} \psi'(x) dx \sim \frac{\varrho^*}{(\varrho^* + k + 1)} (\log r)^{k+1} \psi(r)$$
,

(ii)
$$\int_{r}^{r^{1+\eta}} (\log x)^k \varrho^*(x) \frac{\mathrm{d}x}{x} \sim \frac{\varrho^*}{k+1} (\log r)^{k+1} ((1+\eta)^{k+1}-1)$$
,

and

(iii)
$$\frac{\psi(r^{1+\eta})}{\psi(r)} \sim (1+\eta)^{e^*}$$
,

as $r \to \infty$.

Proof. We have

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}r} \left((\log r)^{k+1} \psi(r) \right) = (\log r)^{k+1} \psi'(r) \left\{ 1 + \frac{(k+1)}{r \log r} \frac{\psi(r)}{\psi'(r)} \right\} = \\ &= (\log r)^{k+1} \psi'(r) \left(1 + \frac{k+1}{\varrho^*(r)} \right) \sim (\log r)^{k+1} \psi'(r) \left(\frac{\varrho^* + k + 1}{\varrho^*} \right), \end{split}$$

as $r \to \infty$ and so (i) follows.

Since $\lim_{x\to\infty} \varrho^*(x) = \varrho^*$, one can easily see that

$$\int_{r}^{r^{1+\eta}} (\log x)^{k} \varrho^{*}(x) \frac{\mathrm{d}x}{x} \sim \varrho^{*} \int_{r}^{r^{1+\eta}} (\log x)^{k} \frac{\mathrm{d}x}{x},$$

and

$$\log\left(\frac{\psi(r^{1+\eta})}{\psi(r)}\right) = \int_{r}^{r^{1+\eta}} \frac{\varrho^{*}(x)}{x \log x} dx \sim \varrho^{*} \log\left(1+\eta\right),$$

as $r \to \infty$ Hence (ii) and (iii) are established.

Proof of the Theorem. Let $0 \le \eta < \infty$ and $r_0 > 1$. Then

$$\begin{split} \varphi(r^{1+\eta}) &= O\left((\log r)^{-k-1}\right) + \frac{(k+1)}{(1+\eta)^{k+1}(\log r)^{k+1}} \int_{r_0}^{r} (\log x)^k A(x) \, \varrho^*(x) \, \frac{\mathrm{d}x}{x} \\ &+ \frac{(k+1)}{(1+\eta)^{k+1}(\log r)^{k+1}} \int_{r}^{r} (\log x)^k A(x) \, \varrho^*(x) \, \frac{\mathrm{d}x}{x} \\ &= O\left((\log r)^{-k-1}\right) + \frac{(k+1)}{(1+\eta)^{k+1}(\log r)^{k+1}} \int_{r_0}^{r} (\log x)^{k+1} A(x) \, \frac{\psi'(x)}{\psi(x)} \, \mathrm{d}x \\ &+ \frac{(k+1)}{(1+\eta)^{k+1}(\log r)^{k+1}} \int_{r_0}^{r^{1+\eta}} (\log x)^k A(x) \, \varrho^*(x) \, \frac{\mathrm{d}x}{x} \\ &< O\left((\log r)^{-k-1}\right) + \frac{(k+1)(\gamma+\varepsilon)}{(1+\eta)^{k+1}(\log r)^{k+1}} \int_{r_0}^{r} (\log x)^{k+1} \psi'(x) \, \mathrm{d}x \\ &+ \frac{(k+1) A(r^{1+\eta})}{(1+\eta)^{k+1}(\log r)^{k+1}} \int_{r}^{r^{1+\eta}} (\log x)^k \, \varrho^*(x) \, \frac{\mathrm{d}x}{x} \\ &\sim \frac{(k+1)(\gamma+\varepsilon) \, \varrho^*}{(\varrho^*+k+1)(1+\eta)^{k+1}(\log r)^{k+1}} \psi(r) + \varrho^* \left(1 - \frac{1}{(1+\eta)^{k+1}}\right) A(r^{1+\eta}), \end{split}$$

using (i) and (ii) of the lemma. Therefore

$$\begin{split} \frac{\varphi(r^{1+\eta})}{\psi(r^{1+\eta})} &< \frac{(k+1)(\gamma+\varepsilon)\,\varrho^*}{(\varrho^*+k+1)(1+\eta)^{k+1}} \;\; \frac{\psi(r)}{\psi(r^{1+\eta})} \; + \\ & + \; \varrho^* \left(1 - \frac{1}{(1+\eta)^{k+1}}\right) \, \frac{A(r^{1+\eta})}{\psi(r^{1+\eta})} \; . \end{split}$$

Hence

$$lpha \leqslant rac{(k+1)\,arrho^*\gamma}{(arrho^*+k+1)\,(1+\eta)arrho^{*+k+1}} + \left(1-rac{1}{(1+\eta)^{k+1}}
ight)arrho^*\gamma$$
 ,

and

$$\beta \leqslant \frac{(k+1)\,\varrho^*\gamma}{(\varrho^*+k+1)(1+\eta)\varrho^{*+k+1}} + \left(1 - \frac{1}{(1+\eta)^{k+1}}\right)\varrho^*\delta \;.$$

Substituting the best values of η namely $\eta = 0$ and $\eta = (\gamma/\delta)^{1/\varrho^*} - 1$ in the above two inequalities, we get (5.1) and (5.2) respectively.

Similarly, we have

$$\frac{\varphi(r^{1+\eta})}{\psi(r^{1+\eta})} > \frac{(k+1)(\delta-\varepsilon)\,\varrho^*}{(\varrho^*+k+1)(1+\eta)^{k+1}}\,\,\frac{\psi(r)}{\psi(r^{1+\eta})}\,+\,\,\varrho^*\left(1-\frac{1}{(1+\eta)^{k+1}}\right)\frac{A(r)}{\psi(r)}\,\frac{\psi(r)}{\psi(r^{1+\eta})}\,.$$

Therefore

$$\alpha \geqslant \frac{(k+1)\,\varrho^*\,\delta}{(\varrho^*+k+1)(1+\eta)^{\varrho^*+k+1}} + \left(\frac{1}{(1+\eta)^{\varrho^*}} - \frac{1}{(1+\eta)^{\varrho^*+k+1}}\right)\,\varrho^*\,\gamma\;,$$

and

$$\beta \geqslant \frac{(k+1)\,\varrho^*\,\delta}{(\varrho^*+k+1)(1+\eta)^{\varrho^*+k+1}} + \left(\frac{1}{(1+\eta)^{\varrho^*}} - \frac{1}{(1+\eta)^{\varrho^*+k+1}}\right)\varrho^*\,\delta\ .$$

Substituting

$$\eta = \left(\frac{\left(\varrho^* + k + 1\right)\gamma - \left(k + 1\right)\delta}{\varrho^*\gamma}\right)^{1/k+1} - 1$$

and $\eta = 0$ in the above inequalities, we obtain (5.3) and (5.4) respectively.

Corollary. If $\gamma = \delta$ then it follows that

(5.5)
$$\alpha = \beta = \frac{(k+1)\varrho^*\gamma}{(\varrho^* + k + 1)}.$$

The converse of the result (5.5) also holds good and we prove it in the following theorem.

Theorem 5.2. If α, β $(0 < \beta, \alpha < \infty)$ and γ, δ $(0 < \delta, \gamma < \infty)$ be defined as above and if $\alpha = \beta$, then

$$\gamma = \delta = \frac{(\varrho^* + k + 1)\alpha}{(k+1)\varrho^*}.$$

Proof. Let $0 \le \eta < \infty$. Then

$$\varrho^* \big((1+\eta)^{k+1} - 1 \big) \big(1 + O(1) \big) A(r) = \frac{k+1}{(\log r)^{k+1}} A(r) \int_r^{r+\eta} (\log x)^k \varrho^*(x) \frac{\mathrm{d}x}{x} \leqslant r^{1+\eta}$$

$$\leq \frac{k+1}{(\log r)^{k+1}} \int\limits_{r}^{r^{1+\eta}} (\log x)^k A(x) \, \varrho^*(x) \, \frac{\mathrm{d}x}{x} = \frac{k+1}{(\log r)^{k+1}} \left(\int\limits_{1}^{r^{1+\eta}} - \int\limits_{1}^{r} \right) (\log x)^k A(x) \, \varrho^*(x) \, \frac{\mathrm{d}x}{x}$$

$$= (1+\eta)^{{\boldsymbol{k}}+1} \varphi(r^{{\boldsymbol{1}}+\eta}) - \varphi(r) \;.$$

Since, for arbitrarily small $\varepsilon > 0$ and $r > r_0(\varepsilon)$, we have

$$\alpha - \varepsilon < \frac{\varphi(r)}{\psi(r)} < \alpha + \varepsilon$$
,

therefore

$$\begin{split} \varrho^* \big((1+\eta)^{k+1} - 1 \big) \big(1 + O(1) \big) A(r) &< (\alpha + \varepsilon) (1+\eta)^{k+1} \psi(r^{1+\eta}) - (\alpha - \varepsilon) \psi(r) \sim \\ & \sim \psi(r) \{ \big((1+\eta)^{\varrho^* + k + 1} - 1 \big) \alpha + \big((1+\eta)^{\varrho^* + k + 1} + 1 \big) \varepsilon \} \; . \end{split}$$

Hence

$$\lim_{r\to\infty}\sup\,\leqslant\,\frac{A(r)}{\psi(r)}\leqslant\frac{\alpha\{(1+\eta)^{\varrho^*+k+1}-1\}}{\varrho^*\{(1+\eta)^{k+1}-1\}}\,.$$

But η is arbitrary and so making $\eta \to 0$, we find that

(5.6)
$$\limsup_{r \to \infty} \frac{A(r)}{\psi(r)} \leqslant \frac{(\varrho^* + k + 1)\alpha}{\varrho^*(k+1)}.$$

Similarly, by considering the inequality

$$\varrho^* (1 - (1 - \eta)^{k+1}) (1 + O(1)) A(r) \geqslant \frac{k+1}{(\log r)^{k+1}} \int_{r^{1-\eta}}^{r} (\log x)^k A(x) \, \varrho^*(x) \, \frac{\mathrm{d}x}{x}$$

one can readily see that

(5.7)
$$\liminf_{r \to \infty} \frac{A(r)}{\psi(r)} \geqslant \frac{(\varrho^* + k + 1)\alpha}{\varrho^*(k+1)}.$$

Hence the theorem follows from (5.6) and (5.7).

References.

- [1] R.P. Boas, Entire functions, Academic Press, N.Y. 1954.
- [2] P. K. Jain: [•]₁ On the mean values of an entire function, Math. Nachr. 44 (1970), 305-312; [•]₂ Growth of geometric means of an entire function, J. Math. Sci. 7 (1972), 78-85.
- [3] P. K. Jain and V. D. Chugh: [•]₂ The geometric mean of an entire functions of order zero, Collect. Math. 24 (1973); [•]₂ On the logarithmic convergence exponent of the zeros of the entire functions, Yakohama Math. J. 21 (1973), 97-101.
- [4] P. K. Kamthan, On the mean values of an entire function (IV), Math. Japan 12 (1968), 121-129.
- [5] P. K. KAMTHAN and P. K. JAIN, The geometric means of an entire function, Ann. Polonici Math. 21 (1969), 247-255.
- [6] B. J. LAVIN, Distribution of zeros of entire functions, AMS translations, Providence (1964).
- [7] S. M. Shah, A note on lower proximate orders, J. Indian Math. Soc. 12 (1948), 31-32.
- [8] S. M. Shah and M. Ishaq, On the maximum modules and the coefficients of an entire series, J. Indian Math. Soc. 16 (1952), 177-182.
- [9] S. K. Sing and S. H. Dwivedi, The distribution of a points of an entire function, Proc. Amer. Math. Soc. 9 (1958), 562-568.

Abstract.

Analogous to the properties of a proximate order and a lower proximate order for an entire function of order ϱ (0 < ϱ < ∞) and lower order λ (0 < λ < ∞), properties of a L-proximate order and a lower L-proximate order for an entire function of order zero with L-order ϱ^* (ϱ^* < ∞) and lower L-order λ^* (λ^* < ∞) have been considered, and used to study the various growth relations of the geometric means G(r) and $g_k^*(r)$ for an entire function of order zero.