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Logarithmic proximate order and geomeiric means

of an entire function of order zero. (**)

1. - Introduction.

For a non-constant entire function f(z) of order zero, the L-order (loga-
rithmie order), o*, and the lower L-order, 1%, are given as[8]:

sup log log M(r, *
lim p log log M( f)__ [

r>w inf  loglogr = A% (L<A<g<eo),

where M(r, f) = max |f(z)].

z|=r

Let us define the following geometric means of f(z) for 0 < k< co,

(1.1) G(r) = exp {2%1 j log |f(rexp (i9)) | d()} ,
(1.2) gi(r) = exp {kr;tll fm’»'log G(x) dx} ,

0
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and

r

k-1 d
i f (log )" log G(x) ;”}

(log 7)F+1 )
1

(1.3) gi(r) = exp {

The mean value (1.2) was introduced by Kamthan [4] and a number of
results regarding its growth with respect to G(») and other auxiliary fune-
tions for an entire function of order p were obtained in [2], [2],, [4], [5]. In a
recent paper [3], we have introduced a new geometric mean g; () as defined
in (1.3), and various relations involving the comparative growths of G(7),
g:(r) and g;(r) relative to each other for an entire function of order zero have
been established. It has been noted therein that the L-orders and the lower
L-orders of the logarithms of these means are the same. Besides, the differences
in the results regarding the growths of the pairs (G(r), g.(»)) and (G(r), 7))
have also been observed. The object of this paper is to continue a similar type
of study by introducing L-proximate orders and thereby finding out the growth
of G(r) and g,: (#). In seetion 2, we discuss certain preliminaries, whereas the
remaining sections are devoted to our main results.

2. - Preliminaries.

It is assumed (throughout) that f(z) is a non-constant entire function of
order zero. Ior these functions, we have

o1=gLb. {o: >0 and Y1 *<co}=0,

nesl

where {r,}., denotes the sequence of the moduli of the zeros of f(z). To have
a more precise deseription of the distribution of the zeros of such funections,
we define a number g, as

of = glb. {a: > 0 and I (logr,) %< oo},

n=1

and call it the L-convergence (logarithmic convergence) exponent of the zeros
of f(2) in analogy with p, the convergence esponent of the zeros. Recently,
the authors have proved that [3];:

log n(r)

(2.1) lim sup =01 (0<ef <o),

r— oo log logr
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where n(r) is the number of the zeros of f(z) in the dise |2| <, and that
o*= g, -+ 1. Also, we denote the limit inferior in (2.1) by A and name it the
lower L-convergence exponent of the zeros of f(2) in analogy with 4, the lower
convergence exponent of the zeros, i.e.

log n(r :
(2.2) lim inf l—cﬁfﬂ‘). = M (D<A <o)
r>wo loglog?
Also let
o ¢ . n(ax)
(..43) N (’)') = T da y

)

where it is assumed, without any loss of generality, that n(r) = 0 forr<1.
We define u(r), a real-valued function, to be a L-proximate (logarithmic
proximate) order if it satisfies the following conditions:

(1) w(r) is continuous and differentiable in adjacent intervals for »> 4,
(i) Impu@)=p (0 <pu<<oo),
> 0
and

(iii) Hmr-py'(r)-logr-loglogr=20,

r—>

where u'(#) is either the right or the left-hand derivative at points where they
are different. '

We state below the existence theorem for the L-proximate order which can
be easily proved on the lines of Levin ([6] p. 35):

Theorem A. If F(r)is any function that is positive for » > 1 and sati-
sfies the conditions:

(2.4) = lim sup 5 (u>0),

then L-proximate order u(r) can be chosen so that
(iv) F(r)<(logr)un

for r>ny, and

(v) F(r) = (log ryuo

for a sequence r, (n=1, 2, 3, ...) of values of r tending to infinity.
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Further, if » (0 <y < oo) be the limit inferior in (2.4), then following the
lines of Shah [7] it is easy to prove the existence of lower L-proximate order
¥(r) having the following conditions:

(i) »(r) is real, continuous and differentiable in adjacent intervals for

7,

@{1i) limoy(@r)=vy (0 < v << o0),

>

(iii)" limr-9»’'(r)-logr-loglogr = 0,

T3 00

where »'(r) is the right-hand or left-hand derivative where the two differ,
(iv)" F(r)= (logr)»™, for r>1,,

and
(V)" F(r) = (log r)r™,

for a sequence 7, (m=1,2,3,...) of values of r tending to infinity.
Now, computing exactly on the lines of Levin ([61, pp 33-35) one can de-
duce that:

(a) (logr)#” is a monotone increasing function of », for r>7, u> 0;

(b) for r — oo and 0 <a<k<b< oo, the asymptotic inequality
(1 — &)k (log #)utn < (log 7*)ur < (1 +- &)l (log )0

holds uniformly in Z;

r a (log 7,)y(r)+1—9
X 37 Ao U i AL A
(e) for p<p+1, f(logt)" AT —

and

[
it (logr)sn+i—o

d
Y ; u(3) - —~
(@) for p>p+1, f Jog 1~ ==y

IS

Also, following Singh and Dwivedi [9], we can easily obtain the various
properties for lower L-proximate order »(r) analogous to (a)-(d) of u(r).
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3. - Comparative growth of log G(») and log gr(r).

Theorem 3.1. If f(2) be an entire function of L-convergence exponent g;
(0 < 0] < c0) and lower L-convergence emponent A; (0 << /1; << oo), then

lim i fIog: g:('r) E+1
(3.1) e " log G S of ¥ k2’
and
lim & log gi (1) k+1
o im > -3 .
(3.2) o o up log G(7) Al +k+2

Proof. It is known that (see[3], theorem 1)

lim 5P loglog G(r)  of +1
(3.3) row inf loglogr ~— AF--1°

Set o; + 1=y and A, +1=1». Since (3.3) is satisfied and 1<, y < oo,
there exist a L-proximate order u(r) and a lower L-proximate order »(r) for
the function log G(r) satisfying the conditions (i)-(v) and (i)’-(v)’ respectively
in section 2 where F(r) is replaced by log G(r).

Now, from (1.3) we have

X k41 d dx
log gx(r) = (Tog ri f(h)g )t log Glo)— <
;

e A (4 1(log st
Tog f (log @)u@-+k P (1+0@)),

To

< 0((10g T)-—k——l)‘ 4

L (k + 1)log G(r)

TN = T e (14 o)),

for y =1,—+co as n->co. Hence, (3.1) follows.
Similarly, making use of the lower .L-proximate order »(r) instead of uir),
(3.2) is obtained.
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4. ~ Growth of log G(r) and log g;(r) relative to n(r).

Theorem 4.1. Under the hypothesis of theorem 3.1, we have

lim inf logG(r) 1
(4.1) ,I,I,nmm nr)logr = of 17

i log G(r) - 1
(4.2) ,_I_I:isup n(r)logr = AF 17
lim i flog e (r) E+1
(4.3) e () logr = (oF + (e F b+ 2)
and
i log gi(7) - -+ 1
(4.4) LS o logr © (AF + D(Ar Lk +2)°

Proof. In view of (2.1), (2.2) and 0< 1], o) < oo, there exist a I-
proximate order o, (r) and a lower L-proximate A;(r) relative to n(r) satisfying
the conditions (i)-(v) and (i)’-(v)’ respectively in section 2 where F(r) is replace
by n(r).

Now, by Jensen’s theorem (see Boas [1] p. 2)

rn(w) d N
(4.5) log Gr)=0(@1)+ f—;— de<0O@)+ f (log 50)91(2); ~
(log ryef (N +1 _ afr)logr

(05 +1) (rmpy 06 +1 7

for a sequence r=7,->oco0 as #->oo, 50 (4.1) is proved.
Similarly, making use of A}(r) instead of o} (+), (4.2) follows.
Further, for 1 <r,<r, we have

E+1 d . dm
(%logr)kﬂ f log G(z) (log m)yk; .

fo

log gz (r) = O((log r)~*-2) +
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Therefore, in view of (4.5), we see that

r
k4 (log m)ei (@) +i+1 dg
(10g7 k+l oF 1 @
(k - 1) (log r)estn+1 (k + 1)yn(r) logr
~ e P (1 40(1) = e R
(o7 + Doy + k -+ 2) e>ry (08 + 1) (oF + %+ 2)

log g5 (r)< O((log r)=*-1)

(1 +0@),

for r =7, — oo as m - co. Consequently, (4.3) is established. The inequality
(4.4) can similarly be disposed on by using A;(r) instead of g, (7).

5. - Growth of log G(r) and leg gf(r) relative to an anxiliary function involving
L-proximate order.

Let f(2) be an entire function having L-order o* (¢* < oo) and L-proximate
order g*(r). Further, let

plr) = memm @, A@)=log6@).

(10g7)lm~1

Then @(r)~ o*log g7 (r) as r — oco. Define:

sup o(r)  « ' T A@)
e inf p(r) B e inf p() 87
where

o*(x)
gu(r):expj———dm, e>1.

xlogx
c

Now, we prove:

Theorem 5.1.

% < (k+ 1)o*y
(6-1) @ Tkt 1)’
S\ ED)lo¥ [ (4 (e+1)/e* o*
w512 4 .
(5.2) f<e*d (7) {(5) o*+k+1{°

- (k+ L)yp*y ¥y o*/(k+1)
(5.3) T ELY) |9 Fh+ D)=k + 1) !
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and

(k+ 1)p*d
o* k1)

v/

(5.4) B

3\

To prove this theorem, the following intermediate lemma is required:

Lemma. For 0y << oo

»r

(@) f (log 2)+1 ¢/ () dzz ~

T

e* :
@+ F D e

1
. ? ., 4z o*
(i) | (ogay:g*(@) —~ = (logr)**((1 + )+ —1),
and
Ly () o
() = ~ (1 + ),
as r— oo,

Proof. We have

a , k4 1) p(r)
k-1

o* + &k -+ 1)
e*() '

) ~ (log r)E+1 ' () ( o

<

= (log r)**1 9'(r) (1 +

ags r— oo and so (i) follows.

Since lim p*(x) = p*, one can easily see that

2>
s s1+n

da dx

(log a)* ¢*(@) ~ ~ ¢* f (log 2=,
2 x

and
elhn N
p*n)y [ o*() .
log ( () ) __f © loga;dwNQ log(1+1),

r

as r—> oo Hence (ii) and (iii) are established.

(8]
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Proof of the Theorem. ILet O0<n<oo and r,>1. Then

= O((log r)~*-1) +

< O((log r)*1) 4+

(B + Dy + &)o*

(14 7)*(log )+
To

1ty

o 4 d
patut H f (log @) 4 (a) *(w) =

(1 )+ (log r)*+ .

-+

T

(k+ 1) 4 _
(1 -+ g)k+t (log r)F+1 f (log @)++1 A ()

To

p'(x)

« da
p{x)

147

et D f (log 2 4 () 0*(2)

(L+ y)F+ (log 1)+t |
r

da

x

+

EtDo+e [
T L ) (log r)Ft f (log w)+ty’(z) dw

To

rl+n
(& 4 1) A(rt+n) iy 32
R ET e f (loga) ¢*(@) 3

r

et b D+

A(THﬂ)y

1
p(r) + o* (1 — W)

using (i) and (ii) of the lemma. Therefore

Hence

P (k4 D+t )
) T (eF + b+ DI 0 o)

+

1

(0 + 1) , . dw
@) = O((log r)~*+-*) + { (log @) A (v) o*() —

A (rtrn)

+ Q* (1 - (1 ket

_ (E+ L)g*y 1 *
= (Q* + k + 1)(1_|_ 77)9*+k+1 + (1 _ (1+ 1])1;-;.1) Q 7,

[24

)

VIGRON
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and

(T + Lye*y 1
P< G Turnas et (1 - m) ¢*0

Substituting the best values of # namely 5 =0 and 7 = (y/6)}/¢* —1 in the
above two inequalities, we get (5.1) and (5.2) respectively.
Similarly, we have

@(ri+m) (b + 1)(6—e)o* p(r) (1 1 A(r) w(r)
w(rtn) T (0¥ 4k -k 1)(1 4 p)Frt p(rin) T (L L) ) g
Therefore
(k- 1)o*d 1 1 N
v R T ((1+ ne' (1+n>~°‘+k+1) e
and
(k+ 1) 9*6 1 1 N
b= (0% + & -+ 1)(1 + p)etehet + ((1 Fapet @+ 77)9*+k+1) ¥ 0.
Substituting

((e* +E+ 1)y— (kb + 1)6)1/k+1
’)7: _— 1

o*y
and # =10 in the above inequalities, we obtain (5.3) and (5.4) respectively.

Corollary. If y =0 then it follows that

5 L, (b 1)e*y
(3.5) ==y

The converse of the result (5.5) also holds good and we prove it in the fol-
lowing theorem.

Theorem 5.2. If o, B (0 << B, x<< o0) and y, 6 (0<< 6, y << o) be defined
as above and if « = p, then

y:6=(Q*+70+1)o¢
(b + 1)o*
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Proof. Tet 0<n<oo. Then

(14 7P+ — 1) (1 +0(1) A(r) =

147
k41

(log r)*+1

k i d
1
A f (log &) ¢*(@) —

<

p1-+7 r

log )t A s fi_‘f:_ k+1 ( 1 x4 " (Eﬁ’
< lognn | (0g@)d@)e*@) 7 =g\ )~ (log z)* A (@) *(w) —

r

1 1

= (L )2 pr*1) — o) .

Since, for arbitrarily small ¢> 0 and 7> ry(e), we have

oc——s<@ <oate,
w(r)

therefore

¢*((L + )+ — 1)L +0) 4) < (o + )L+ nF+1p(r™*7) — (e &) plr) ~

~p{(@ + ) — Do+ (@ + )@ L 1)} .

Hence

. A(r)
lim sup <

o p(r)

o{(1 4 me i — 1
e*{(L+ p)k+t—1} °

But % is arbitrary and so making % — 0, we find that

i A
(5.6) m sup 1;“‘ <

(0* + & + Do
o*(k + 1)

Similarly, by considering the inequality

" _ k1 o . N dwx
OF(L = (L= ) (L +0(1) 40> s f (log @)+ 4 (w) g*(@) —
17
one can readily see that
tim i 200 o, (@2 E A+ D
(5.7) —e 90T o*E+ 1) T

Hence the theorem follows from (5.6) and (5.7).




68 P. K. JAIN and V. D. CHUGH [12]

References.

[1] R.P. Boas, Entire functions, Academic Press, N.Y. 1954.

[2] P. K. JaiN: [+]; On the mean values of an eniive function, Math. Nachr. 44
(1970), 305-312; [ 1, Growth of geomelric means of an entire function, J. Math,
Sei. 7 (1972), 78-85.

[31 P. K. Jarx ana V. D. Cuucu: [«], The geometric mean of an entive funclions of

order zero, Collect. Math. 24 (1973); [ «1, On the logarithmic convergence exponent
of the zeros of the entive functions, Yakohama Math. J. 21 (1978), 97-101.

41 P K. RKayruax, On the mean values of an entire function (IV), Math. Japan
12 (1968), 121-129.

[5] P. K. Kasmruax and P. K. Jamx, The geometric means of an enlire function,
Ann. Poloniei Math. 21 (1969), 247-255. ’

[6] B. J. LaviN, Distribution of seros of entive funclions, AMS translations, Pro-
vidence (1964).

{7 5. M. Suau, A note on lower proximate orders, J. Indian Math. Soc. 12 (1948),
31-32.

[8] S. M. SHAH and M. IsnaqQ, On the mazmimum modules and the coefficients of an
entire series, J. Indian Math. Soc. 16 (1952), 177-182.

[€2}

K. SixG ana 8. H. Dwivept, The distribution of @ points of an entire function,
Proc. Amer. Math. Soe. 9 (1958), 562-568.

(91

Abstract.

Analogous to the properties of a proximale order and o lower prowzimate order jor an
entire function of order ¢ (0 < g << oo) and lower order 4 (0 <1< oo), properties of a
L-proximate order and a lower L-proximate order for an entive function of order zero with
L-order o* (p* << o0) and lower L-order 2% (1* << co) have been considered, and used to

study the various growth velations of the geometric means G(r) and gy(r) for an entire funec-
tion of order zero.




