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C. L. RISHISHWAR (¥)

On the {-type, lower {-type and { -2-type

of the functions represented by the series

go a, exp (A, P(e). (¥*)

1. - Introduction.

So far the growth of entire functions with Taylor series expansion and
that of functions represented by Dirichlet series, have been studied separa,ﬁely
by the different workers in the two fields. With an object to unify the two
approaches, a real series was studied in recent papers [1lp, [1)s, [1]s, [1]s, [1);:
To be more precise, here in this paper, we examine the series ([1]1)

(1.1) > @y 0xD (An p(2))
n=0
where:
(1.2) lim sup #/A,= D < oo, 0= Ao << X < oo (A 55> 00);

{a,} (n=0,1,2,...) is a sequence of complex numbers; (z) is an analytic
function of complex variable z, analytic in the region log |exp y(2)] <R
and satisfying the following conditions:

(@) p(2) has an inverse, that is, if y = y(2), then there exists a

i —1 —1 —
(1.3) function p~! such that y(y) =z,

(b) w(z) =log |exp (z) | + ic

where ¢ is a real function depending on 2 and varying in the interval
— (m or co)<e< 4 (w or oo). '

(*) Indirizzo: Gur Narain Khattri College, Civil Lines, Kanpur-1, India.
(**) Ricevuto: 1-1X-1971.
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Let B, and R, be the « extent of y-convergence » and «extent of absolute
w-convergence » respectively of the series in (1.1). If B, = oo, R, = oo, then
the series in (1.1) is convergent for all values of R < R,, and the sum func-
tion F(z), represented by the series in (1.1), is defined and analytic in the region
log |exp (y2) | <R<R,:

Remark. It is interesting that, if we take y(2) =logz and 2,=n,
or p(s) = s, the series in (1.1) assumes the form of a Taylor series or a Dirichlet
series respectively. Also, log |exp ¢(z)| <R defines a circular region with
its centre at the origin and radius exp(R) as well as a half plane Re s = o< R.

Now, let

F(2) = 3 a, exp [ p(2)]

=0

be a function, satisfying the conditions mentioned in (1.2) and (1.3). Again,
let maximum term pu(R, F) = sup [ |a.|- |exp p(2) "] (n<0); rank of the ma-
ximum term »(R, F) = max{n; |a,|  |exp y(2) | = u(R, F)]. Then u(R, F)=
= |@y(n, ;| 18XD 9(2) | 4,(p,py- Further, let

M(R)= maximum [F(z)| for log |expy(#)|<R< R..

—(or)< e <H(mor )

Beginning with the aim to study the rate of growth of the function F(z)
represented by the series in (1.1), we define the measure of rate of growth of
the function F(z). Let

sup loglog M(R) 0

Rliri inf log [exp y(2)] = (< i<p< o).

(1.4)

We shall refer to the constants ¢ and 1, as defined in (1.4), as the w-order
and the lower - order respectively of the function F(z), which shall be said
of regular y-growth when ¢ = 1. The justification for this, lies in the fact
that ¢ and A4 depend on the function y(2).

A Dbetter estimate of the growth of the function F(z) in relation to the
function w(z) is obtained, if we consider the limit of log M(R)/|exp w(z)|e.
Thus, let

lim P _logME) T O<t<T <
(1.5) 2w inf  |expw(z)]e T ¢ = °)s

where g (0 < g << oo) is the y-order of the function F(2). We define « I » to
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be the y-type and «¢» the lower y-type of the function F(z) of y-order g, and
in case the limit in (1.5) exists i.e. T=1 (<o) and ¢ = 4, we say that «the
function (2} is of perfectly regular y-growth ».

Here, in this paper, we obtain expressions for y-type and lower p-type
in terms of the coefficients of the terms of the series in (1.1). Another concept
of y-A-type is given here when lower y-type is zero. In last section of this
paper, we define y-growth numbers and obtain a number of inequalities con-
necting them with y-type and w-order, for which we shall prove some lemmas
in the beginning.

2. — Lemma 1. Let F(2) =Y a, exp (1.-(2)) be a function, analytic in
n==0

the region log |exp y(2)| <R, then for every z in this region

v (&+0i)
F(2)-exp [— Aus ()] y'(2) e,

v (B-01)

2.1 a,=—lim —
( ) " 0> (mwor ©) 2C1

where y(z) = log |exp y(2)| + ¢i and integration being taken along the path
log |exp y(2) | =R, also when the limit C—>m, is considered, A,s are taken to
be integers.

Proof. We have

F(2)-exp (— A~ 9(2)) = agexp ([A— 2] 9(2)) + ... +

+ @na€XD ([Anoy— 2a]9(2)) + @0 + @ny1-exp ([An— ] () + ... .

It can easily be shown that the series is uniformly convergent in the region
log |exp y(2)| =R, hence integrating along the path log |exp w(s)| = R,
we have

(7o) exp [— 1o ple)] dfp(e) ) = ?Jexp [~ A ()] d{p(E)} + . +

B—0f R—

B+ 0

R+0%
+_f Ap_y €XP ([ﬂ'n—l — Al 1/}(2)) d{y’(z) } ‘I;.[of“n d{V’(z)} +

R—0§

R+04

-{—Bj'_z,,ﬂ exP ([Any1— Anl 9(2)) A{w(@)} + ... .
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Therefore, from (1.3), we have

y Y (r+07) +o

1 1
i f F(e) exp(— Au- () 9'(2) e = 5= a0 0XD (— 20" R) f exp (— Ay-ci)de+ ..

v~ (&—01) ]
+0
1
e + % *d, 1 €XP (R[ln_l — Zn]) f exp ‘([An—l - 2-11] . 07/) de + an+
-0
+
1
+ 2_0 . an-}-l'exp(R[}wH-l - Zn]) ° fGXP ([}"n-u - }“n] . C’i) de + oo =
-0
+0
1
= ...} 50 Gn-17 €D (Bl Ans — Aa]) f [cos {21 — Afe+isin{A, , — A} e]de+
—a

+¢

1

+ 5 G exD (R[Ans1— Anl) f [€08 {Ans1 — Auf ¢+ i8I0 {2,y — An}e]de.
—0

Proceeding to limits, we obtain

™ {(R+-07)

1
01-I+n(n‘ or @) 2Ci f F(2)-exp (— 20 9(2))  9'(2) Az =a,,
y~i(r—0i)

sinee all the integrals in the right hand side of the equality vanish in view
of the limits under consideration. While considering the limit ¢ —x, 1,5 are
taken to be integers.

Remark. The formlae for the coefficients a,, in case of power series and

Dirichlet series follow from the expression obtained here. The method used
here is different from that of Cauchy and J. F. Ritt.

Lemma 2. Let F(2) = > a,exp (. p(2)) be a function analytic in the
n=0

region log |exp p(2)| <R (R << R), then
(2.2) [@.] - |exp (p(2) |™) <M(R) for all values of n,

where BM(R) is the upper bound of |F(z)] on the path log |exp v'(2)| = R.
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Proof. From Lemma 1, we have

v~ {rt08)
. 1 ) ,
i | FEe (= ) 9
y N g—0i)
Therefore,
_z; R4-0i
{(R) . 1
a,|l < ———————— lim. — dip(=)} ,
i t fOXp y)(z)iz" ¢-> (morw) 201 f {1/)( )}
BR—Ci
or
M(R)
faa| <

Jexp p(z)| *n

and hence the proof.

Theorem 1. The necessary and sufficient condition that the function

F(2) = > a,exp (1. p(2))

n=0
to be of p-type I (0<T << o0) of finite w-order 9> 0, is thai

(2.3) ' lim sup (A./e0): |, |/ n=1T".
Proof. Let us set
lim sup (Z,;/GQ)' lanle“" =,
n—>o
Suppose that.0 <y < co. Let e>0, we have

(v + 8)'89]17:/9
—— for n>mn,.

ianl<[ .

Hence

70| <3 Jan) - [exp p@) ot 3 [0, [exp (o) |

o+l

BYR——

fig-f-1

[ (v -+ e)eg- |exp p(z) e ]‘ule
PN .
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The general term on the right hand side does not exceed its maximum

which is exp[(v + &) |exp p(2) |¢] attained for A,= (v 4 &)-p|exp p(2)]e.
Now choose an integer M such that

Ay<(v -+ 2e)e0- lexp p(2) [0 < Ay, -

When 2, ,<4.<4,, we have

[ v+ s)eo- [exp p(e) |2
s

lﬂ
3 } fe < (number of terms)-exp[(v+ ¢)- |exp (z)|e]

fig-+1

=0[exp{(v--¢)- lexp p(2)| %}].

Also
& [+ edeo-foxp (9(2)) [9]%1e & [v+ e
2. [ ; <> |—| =00
M+1 n M+1 LV T <€
Thus
. log M (R)
2 T'=limsup ———— <
4) P P lexp p(2)]e 4
Again, suppose 0 <y < co, we have for an infinity of =
(v—¢)eg] ke
lan| > v O<e<w).

If, for these values of A,, we take |exp y(z)|®= 4,/(r— ¢)p, then from
Lemma 2, we have

—¢&)eo- |exp w(z)]e T4
M(R)> |a,|- |exp p(e) | > [‘” )ee*|exp v(e)| ] Jo

A

= exp (/o) = exp [(v — &) |exp y(z) |¢]
for a sequence of values of B tegdjng to infinity. Thus
(2.5) ‘l T>v.

Hence the result in (2.3) follows from’(2.4) and (2.5).
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Theorem 2. Let F(2) = 3 a,-exp (A, p(2)) be a function of wp-order o
n=0

(0 << o << o0) such that

log M(R)

liminf —————— =1
2o [exp p(2) |e
If Anyyr~ 2y, then
a
. . fn /x”
(2.6) t>lim inf 2= - a, |,

and further, if log |a,ja, s11[(Ansa— 2,) forms a non-decreasing function of n for
n>mn, then

t = limint 22 - |a, |o%
7 = nf — - .
(2.7) im inf la, |

n—>o <

The proof of the theorem is omitted as it is similar to that given for the
real series ([1],, p. 87).

Theorem 3. Let F(2), represented by the series in (1.1), be a function of
y-order ¢ and lower w-order 1 (0 <1< p<< o0). Then

I

log M(R 8
(2.8) limint £ i ing (2.2)

R—® [exp w(z)]® R—> Jexp (2)]e o

ie. the lower w-type of the function F(z) of irregular y-growth of finite P-
order o, is zero.

Proof. From (1.4) we have
(2.9) log M(R)> |exp p(z) |*~2  for any &> 0 and R> R,= Ry(e) .
(2.10) log M(R) << |exp p(z)|@®  for a sequence of values of R -+ oo .

Dividing (2.9), (2.10) by |expy(z)|e and then proceeding to limits, the
argument shows that
log M(R)

Im inf ———— =
Rreo fexp p(e)|e
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Also, proeeeding on the lines as above, we obtain the second part of the theorem.
3. — The fact that

- lo Mg (E)
liminf —————— =0 when O<i<o<<oo,
o XD P(e)]e

opens the question of comparing the function log |F(2)| with the function
[exp p(z)|* when 0<C <o <<oco, BEvidently, since <o,

) log M(E)
lim sup ———— = oo
oo P lexp (2)|*

yet lim inf [log M(R)]/|exp p(2) |* may still be a finite constant. We shall
B>

refer to this constant as y-A-type of the function F(2) and denote it by ¢,.
A result, similar to that of Theorem 2, also holds for w-A-type t,, which can be
proved on the lines of that theorem.

4. — In this section, we define wy-growth number v and lower y-growth
number 6 as

su 2y »
(4.1) lim | ) (0<d<y < o).

2w i oxpp()fe 7

Theorem 4. If the symbols have the meanings as mentioned above, then

\%
\%

(i) y>oT>gt>0,

v exp (6
>/ 16(/y)>5’

V

@) v

(4.2) ) (i) y> o (1+log %) >ot=>0,

(iv) y+ d<eoT,

(v) equality cannot hold simultancously in (iv) and 6 <oT .
The proof of the theorem is omitted as it is based on the proof of a similar
theorem for the real series in a paper ([1], pp. 91-93).

Finally I wish to thank Prof. R. 8. L. Srivastava of Indian Institute of
Technology, Kanpur, for kind interest taken in the preparation of this paper.
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Abstract.

[oe]
Consider the series (¥) 3 a,e* v where limsup nfi,=D < 00, 0= A< 1< A<
n=0
<1< < A D 00, {a,} =0,1,2,..) is a sequence of complexr numbers and (z) is
an analytic function of complex variable z, analytic in the region log lexp w(2)|<R,
and satisfymg the conditions: (a) w(2) has an inverse, (b) w(2)=log |exp y(z)]— e,
where ¢ is a real function depending on 2z and wvarying im the interval — (z or oo)<
c< + (@ or o). Let B, and R, be the « extent of wp-convergence» and «extent of abso-
luta p-convergence » of the series mentioned above. If R,= co and R,== co, then the
series is convergent for all values of R < R, and the sum function F(z) represenied by
this series is defined and analytic in the wregion log lexp w()|<RB<RB,. Taking
w(z)=1logz and A,=mn or w(s)=s the series assumes the form of a Taylor series or a
Dirichlet series respectively. Also, log lexp y(2)|< R defines a circular region with its
centre at the origin and radius e® as well as a half plane Res= o <R, thus the series
unifies the two theories of functions represented by Taylor series and Dirichlet series
respectively. In this paper, we study the rate of growth of the function represented by the
above series. The measures of rate of growth are defined and expressions for them have
been obtained.

Lemma. ZLet F(z)—_—z%-exp (la-9(2)) be a function, analylic in the region
A=l
log lexp 9 (2)]| < R, then for every z in this region

v Y B+01)
a,= lm  (1/20%)[F(2) exp (- A, p(2)) w’'(2) de,

n
o—>(rgor ) v rt08)
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where
p(2) = log |exp (v(2))] + ¢t

and integration being taken along the path log lexp (y(2))| = R, also, whene the limit C— m,
s considered, 1, are taken lo be integers. The expressions for a, in case of Taylor series
and Dirichlct series follow from the expressiom obtained here.



