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MANORANJAN BHATTACHARJIYA (¥)

Some recurrence relations
involving generalized Hermite, Legendre

and ultraspherical polynomials. (**)

1. - Introduction.

Sister M. Celine Fasenmyer [1] introduced an interesting technique for
obtaining recurrence relation of a certain class of hypergeometric polynomials.
The object of this paper is to apply her technique in the ease of some generalized
Hermite, Legendre and ultraspherical polynomials which have received
interest in recent years. Recently L. R. Bragg [2] has considered the sequence
of polynomials {g?(x)} generated by

< ga®)

(1.1) exp[ple—t"] =3 =i
The explicit representation of ¢g2(z) is

a2l (—1)sm!
(1.2) gale) =2 sm—pa! (paw)n=2s .

Another generalization of the well-known Hermite polynomials is given by
K. L. More [3] in the following way:

(*) Indirizzo: Department of Mathematics, Keonjhar College, Keonjhar, Orissa,
India. :
(**) Ricevuto: 17-II-1971.
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The class of well-known Hermite polynomials may be generalized yielding

a new class of orthogonal polynomials {H%(x)} with the weight function w(z)=

= exp [— #*]|x|#, x being a parameter, where the orthogonality relation is
| |w|nexp[— «*) HY (2) Hi(x) doe =0, meEN.

—_

The explicit representations of H¥(z) are (n being even)

/2] (o 1VF( _ Loy
(1.3) H,’f({c):fzz( ¥ nf2), (—(n+p 1)/2)k$n_2k

r=o k!
and (n being odd)

n/2] (_ 1Ve(— (0 — _ .
(1.4) H#(w)z[z]( 1) (— (n—1)/2)p(— (0 + )/2)

k

n—2k
k! © ?
¥=0 !

where (a), =a{a 1) ... (a+n—1).

M. Dutta and K. L. More [4] have recently considered a new class of
generalized Legendre polynomials {P,,)u(m)}, introduced with the help of the
well-known Schmidt theorem and the orthogonality relation

1
{ |@|# Py u(@) Py () dz =0, mzsn .
-1

The explicit representations of P, x(x) are (n being even)

[’%%] (— /2 (— (0 + 1 —1)/2);

(L5) Porl®) =2 i@t we @), ©
and (n being odd)

[ (— (e —1)[2)(— (0 + )2
(1.6) Pal®) = 2 0T o+ i1z :

A. P. Barrucand [5] has considered a generalization of the well-known
ultraspherical polynomials by means of the following generating relation

(1.7) (1— Flw + )2 = > eq(A, k, z) " .

n=20
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It may be of interest to point cut that such type of generalization is found
in the work of P. Humbert [6], who was let to consider the polynomials at
where m is an integer, defined by the expansion

(1.8) (1 — miz + i)y = 3 al (@)t

Here we like to change the notation adopted by Barrucand. We shall write
(1.7) in the form

(1.9) (1 — Ktz 4 tF)2 = iP,’f(w, k)t
n=0

The recurrence relations derived in the present paper are contained in
(2.6), (2.9), (2.10), (3.5), (3.9), (3.11) to (3.14), (4.2), (4.4), (4.6), (4.7), (4.9)
to (4.11), (5.2), (5.4) and (5.5).

2, - Pure and differential recurrence relations for Bragg’s polynomials.

The polynomml is defined by the relation (1.2). Let 22(z) = (92(zm))[n!.
Then

e §

= Sl{n—ps)!

For convenience we use the upper limit of summation as infinity. We write
©
(2.1) = > g(s, n)
s§=0

Sister Celine’s technique is to express z22_ (), AP_,(x) ete., as series involving
&(s, m) and then to find a combination of coefficients which vanishes identically.

Now

«© — 1)8 n--ps @
(2.2) PEAg () = > g™ _ > (n—ps)e(s, n) .

smo SHn—1—ps)! S
Also

b o D LpErrr 2 (L paye
Anmp(®) -FEO T —— g (s— 1){{n—ps)!
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so that

(2.3) A (@)= i“‘ se(s, n) .

n—p
3

In equations (2.1)-(2.3) the co-efficients of ¢(s, n) are of degree one in s. There-
fore, there exist constants 4 and B (independent of s and x) such that

(2.4) J(w) + Apal2_(z) + BA_ (@) =0.

By using equations (2.1)-(2.3) we find that (2.4) is equivalent to the relation
in s

1+ A4(n—ps)— Bs=0.

Equating constant terms 4 =— 1/n and equating co-efficients of s, B =p/n
80 that we get the pure recurrence relation

—
o
o824

nit(w) — pad? _ (%) + pA_(2)=0.

The relation for g2(z) is

gn(®@) gna(®) | gn_,(®)
(2.6) m—11 Pt T P T T
Again

DR = 3 SRR po 2,
so that
D 2y(w) = i (n— ps)e(s, n) .
s=0

Also

2 (—1y(payreos

)-n__m.l(m) 2320 sln—p -+ 1—ps)! o
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—1)'p(n—p + 1 — ps)(pa)-r-rs
sin—op 41— ps)!

D _, () = 20 ( = Zo——pss(s, n) .

It follows therefore that there exists a three term differential recurrence rela-
tion of the form:

(2.7 Ao(w) + AxDi2(w) + BD? (@) =10

‘n—p+1
where 4 and B are constants. We find that (2.7) is equivalent to
14 A4(n— ps)— Bps =0

where from 4 =—1/n and B = 1/a.
Thus we obtain the relation

(2.8) nib(w) — o DA2(z) -+ DA®

n—p+1

(@)=0.
The relation for gi(z) is

ga@)  aDgp@)  Dgh_pn(@)
(n— 1! n! Cne—p 1)U

(2.9)

Again from the equations for pzi2_,(w) and aD22(x) we find

Py (@) = D2(2),
from which we get the relation in g®(z) as

(2.10) Dgy(@) = pngl_, (x) .

3. - Pure and differential recurrence relations for More’s generalized Hermite
polynomial.

The funetion H%(x) is defined by (1.3) and (1.4). When n is even

gy _ o (T D=2~ (0 4+ p—1)/2),
Hn(w) —k%O It

a}1;—2k




38 © M. BHATTACHARIYA [6]

which we write as

(3.1) HEi(w) = > e(k, n) .
k=g
Also
& 2k
(3.2) eHY (@) =Y == g(k, n)
k=0
and
b — 4%
133 S A
(3.3) Hy »(2) —kgo YA e(k, n) .

It follows, therefore, from (3.1)-(3.3) that the co-efficients of g(k, n) with a
lowest common denominator have their numerators of degree at most one
in %, and thus we have

(3.4) H%(2) + AxH!_ () + BHY _,(2) =0,

which is equivalent to the relation in %

n(n -+ p—1) + A(n— 2k)Yn +~pu—1)— 4Bk =10,

from which we easily obtain 4 =—1 and B = (» + p— 1)/2. Thus when =
is even the pure recurrence relation is

—1
(3.5) H () — ol () + T HE (@) = 0.
When n is odd
o A= 1¥—(n—1)/2)p(— (0 + 1)/2)
122 — n—2k
H"('”)“,go A e

which we write as
(3.6) Hi @) = Y &k, m) .
k=0

Also

; 2 (n+ p—2h)
(3.7) wHy (%) =2 T gl(ic, n)
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and

L — 4
HE , g, (k, B .
(3.8) heal®) = 3 oy ek )

Therefore by Sister Celine’s technique from (3.6)-(3.8), in a similar manner
as in the case n even we obtain the pure recurrence relation when # is odd as

(3.9) Hi(x) —aHj —1(x)+__Hn_z( z)=0.

Differential recurrence relations:

when #» is even we have

s

aDHYx) = > (v — 2k)e(k, n) ,

k:

i
@

® 4] 1— 2k
DHY (o) = 3 120

S nln+ p— 2k + 1) ek, n) ,

3.10
( ) DHE “E (n+ p+ 1)n+ 1—2k) &)
n+1 E=0 (’It-f— ‘u,._gk + 1) elle, n),
Hu_l(w) < — 4k ]
’2:0 nn+ p—2k L 1) e(k, n) .

In the equations (3.10) the maximum degree with respeet to & of the numera-
tors of the co-efficients of &(k, n) when taken with a lowest common denomi-
nator is two. Therefore, there will exist a four term differential recurrence
relation connecting H%(»), HY_ (), (H*_,(#)/») and DH:_ (»). Let

H“ .
HE(@) + AwHE_(2) + BDHE (@) + Som2@ _

@€
which gives
nin+u—2k4 1)+ An—2k)n + p— 2k +1)— 4Bk(n +1—2k)— 40k =0

We get A=—1, B=1/2 and C = u/2.
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Thus the differential recurrence relation is

(3.11) 2e¢HY (@) — 20 HY _ (x) + «DHE_ (z) + pHY (%) = 0.

It also follows from (3.2) and (3.10) that

(3.12) nH”_ (x) = DH%(w) .

‘When n is odd, we have

o © e
xDHZ (% kg n— 2k e,(k, n) , DH!_ (x) =2 ek, n) .

Thus there exists a relation
Hi(z) + AxHY_ (v) 4 BDHE_ () =0,
which is equivalent to

(0 + ) + A(n + p— 2k)— 4Bk =0,

so that A =—1 and B=4%. Thus we obtain the differential recurrence rela-
tion
(3.13) 2H%(w) — 20HY_ () + DHE_ () =0 .

We may have another recurrence relation connecting HY(z), oHY_ () and
xDH%(z). In a similar manner as above we obtain the differential recurrence
relation

(3.15) PHY) — (0 -+ p) oHE (@) + aDH(@) =

4. - Pure and differential recurrence relations for Dutta and More’s generalized
Legendre polynomials.

The polynomial is defined by (1.5) when » is even and by (1.6) when = is odd.
‘When » is even, we have

i (—2/2)i(— (1 + p—1)/2), J—
¥=o kU — (2n 4+ p—1)/2), !
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which is written as

o«

P, (@) = 3 e(k, n) .

k=0
Thus
e (n—2E)2n+ p—1)
xP,,_], u(@) = ,2:0 n(2n + p— 26— 1) elky m)
and

& —2k@2n 4+ p—D(2n -+ p—3)
—Pn-—Z, l‘(w) = z
k=

o w4+ —1)2n A+ u—2k—1) &k, ) -

In the above equations when the co-efficients of e(k, n) have a lowest common
denominator, the maximum degree with respect to & of the numerators is one.
Then there exist constants 4 and B such that

(4'1) Pn,ﬂ(w) + AmPn..l,!t(w) + BPn_‘z,ﬂ(w) == 0 .

By uSing the above equations we find that (4.1) is equivalent to the identity
in k

an+pu—1)2n +p—2k—1) + An—28)2n + u—1)-
i+ p—1)—2Bk2n +u—1)2n +pu—3)=0.
By usual process we get

(w4 p—1)2

4 =-14 T @nta—LE@ntp—3)

Therefore, when #» i3 even, the pure recurrence relation is

(4.2) 2n+u—1)2n + p— 3) Ppu@)— (20 +p—1)(2n + p— 3)-

| @P o (@) + (0 + p—1)2 P, yu(@) = 0.
When n is odd, we have

P, (1) = % (= (n—1)/2)(— (0 + p1)[2)x

k=0

$n—2k
ki (— (2n + p—1)/2), ’




42 M. BHATTACHARJIYA [10]
which we write as

P, @) = 3 ek, n) .
k=0
Thus

4+ pu—28)2n 4+ p—1)
n+ uw)2n+ p—2k—

@P, 1 }: 81( kyn).

k=0
Also

©  —2k(2n 4 x—1)2n+ p—3)
z (n— 1) + p)(2n + p—2k—1)

P (@) =

n—2, u

&k, n).

Therefore, there exist constants 4 and B such that
(4.3) Py u(@) + AwPy_y w(@) + BPy_p (@) =0,
which is equivalent to
n+pn—1002n +u—2k—1)F An—V)n+pup—25)2n +p—1)—
— 2Bk(2n +pu—1)2n + u—3)=0.

Calculating 4 and B we get the pure recurrence relation when » is odd as
(4.4) (2n + p—1)(2n + p— 3) P u(@) —

@n 4+ p—1)2n + p—3) P, 1(2) + (n—1)2Pp (@) = 0.

Differential recurrence relations:
when % is even we have

=<3

@DP, () = > (n—2k)e(k, n),

k=0

—2k(n + 1 —2k)2n + n—1)
’ =0 an+ pu—2k+ 1)

&k, n),

(n+1—2k)n -+ p+ 1)(2n + p— 2k 4 1)
o @n+ p4+ )n+ p—28 4+ 1)

ek, n) ,

Py, u{®) 2 — 220 + p—1)
x  Eemnd+ p—2k-+1)

sk, n) ..



o
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There exists a four term recurrence relation connecting P,,’u(m), ‘xDP,z’M(ac),
DP,_yu(@) and (P,_,u(®))/z. Thus constants 4, B and C exist such that

Py, u(®) _
2l

(4.5) P, i)+ A2 DP, u(w) + BDP, s u(z) + 0.

We find that (4.5) is equivalent to

n{n 4 p— 2k + 1) + An(n— 2k)(n + u— 2k -4 1) —
— 2Bk(n +1—2k)2n +p—1)—2Ck2n +p—1) =0,
from which 4 =—1/n, B=1]2n 4 u—1) and 0 =u/2n -+ p— 1).
Thus the recurrence relation is
(4.6) w20 + p— 1) 2P, o(v) — (20 + p— 1) 2> DP, u(z) +
+ n{v-DPn_l,ﬂ(m) + n,uPn_l,/l(m) =0.
Again there exists a four-term recurrence relation connecting P, u(@)y DPy_y u(),
DP, s u(w) and 2DP, u(x). In a similar manner as above we get the differential
recurrence relation
(4.7) @n+p—1)2n 4w+ 1) P, u(@) — 02 DPp_y y(@) —
—(2n +p—1)@2n + u 1) DP,y, u(®) +
+ @20+ pu—21)2n +p + 1)2DP, u(x) =0 .

When # is odd, we have

#DP, (&) = i (n — 2%) & (k, n),

=0

o — 2620 4 p—1
DP,_,u@)=S —2k@n A+ p—1)

ek, n
P (k)

S (n+ D@0+ pu—2k+1)
DP, ; u(®) “‘kgo 2n4p 41

&k, n) .

The above equations suggest that there exists a relation

(4.8) P (@) + AzDP, u(x) + BDP,_; u(@) =0,
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A and B being constants. Now (4.8) is equivalent to
(n -+ u) + Aln + p)(n— 2k)— 2Bk(2n + u—1) =0,

from which 4 =—1/n and B = (n + u)/(n(2n + x—1)). Thus we have the
relation

(4.9) (20 + p— 1) P, u(@) — (2n + u— 1)2DP, \(z) +

+ (1 + ) DPy_y ) = 0 .
Similaﬂy we obtain the relations
(410)  (n+1)(@n+p— 1)@ + g+ 1) Py ulw) +

+ 4+ 1)+ p)DP, y w(@)— 20+ p—1)(2n + p + 1) DP,y,; u(z) = 0

and

(4.11) (n+1)(n +u+ 1) P, u(@) + (0 + 1) 8DP, () —
—@n+p+1)DP,;u(x) =0.

5. - Pure and differential recurrence relations for generalized wultraspherical
polynomials.

From (1.9) we have

(0 (— 1)P(2) o)y (o)
A . n—{k~1)p
Fal, k) —pgo plin—kp)! ’

which we write as

(— 1)P(ApenypBm)r=i2 2

Bo Ty 3 _
Pla, 1) =3 Tl = S e, )
Thus V
3 2 (n— kp)
an—l(xy k) —ﬂ% k{l—{-n—(k*—l)pw—l} e(p, n)
and

A - —P
Prsl@; ) _,go {A+n—E—1)p—1} &

(p,n) .
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In P, k), xPi_l(a;, k) and P’_ (=, k) coefficients of &(p, n) have their nume-

rators of the first degree in p when a common denominator is used. Therefore,
there exists a recurrence relation of the form
(5.1) PXa, k) + AxP:_ (2, k) - BP? (0,k) =0
which is equivalent to
{A+n—(k—1)p—1}k + A(n— kp)— Bpk =10
and from this 4 = (k(1—n— 2))/n and B = (k(A— 1)+ n)/n.
Thus we get the pure recurrence relation

(5.2)  nPMz, k) + (1—n— D) kaP:_ (2, k) + {k(A—1) +n} P} _ (2, k) =0

which was obtained by A. P. Barrucand in a different method.
Differential recurrence relations:

'D‘P:'-i-l('/'v’ k) = i’k{l +n— (k—1)p}e(p, n),

»=0
aDPNa, k) = 3 (n—kp)e(p,n),
p=0
DPi—kﬂ(wa k)= z_ kpe(p, n) .

=0

There will exist a three term differential recurrence relation of the type
(5.3) PXz, k) + ADP!, (», k) +~ BDP! ., (#,k) =0
which is equivalent to

1+ Ak{A+n— (k—1)p}— Bpk=10

giving 4 =—1/(k(A-+n)) and B = (k— 1)/(k(A-+n)) so that the differential
recurrence relation is

(5.4) (A +n) Py, k)— DP}, (@, k) + (k— 1) DP} (2, k) =0.

Again, from the equations for Pi(z, k), DPX(z, k) and DP*__ (2, k), we easily
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get the differential recurrence relation

(8.5) nPX@, k) — aDPXw, &) + DP:_ (2, k) =0

which was derived by 8. K. Chatterjee and B. B. Saha [7] in a different way.

The author wishes to express his sincere gratitude to Dr. M. Dutta and
Dr. 8. K. Chattarjee for their kind help and constant encouragement.
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