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Some theorems on integral transforms. (**)

1. - Introduction. :

In this paper first we establish a general theorem concerning integral trans-
forms introduced by Meijer and Varma. Later on we evaluate some new and
interesting infinite integrals involving the H-function with the help of some
of the special cases of the theorem. Next we prove a theorem showing close
relationship between generalized Stieltjes transform and Mainra transform.
Several results obtained earlier follow as particular cases of our findings.

The H-function.

The H- function will be defined and represented as follows ([1] p. 239):
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where 2 is not equal to zero and an empty product is interpreted as 1; p, g, n
and m are integers satisfying: l<m<gq; O0<n<p; o; (j=1,..,p), B
(j=1,..,q) are positive numbers, and a; (j=1,..,9), b; (j=1,...,q are

(*) Indirizzo: Department of Mathematics, M. R. Engg. College, Jaipur, India.
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complex numbers such that no pole of I'(b,— B,&) (h=1,...,m) coincides
with any pole of I'(1—a;+ ;&) (i =1,..,0) ie.

(1.2)  afbp+v)y#=Pula;—n—1)  (ryn=0,1,..5h=1,..,m;i=1,..,n).
Furhter the contour I runs from ¢ — 4 co 0 ¢ - oo such that the points

b, + ¥
=2 (h=1,..,m;v=0,1,2,..),

B

which are poles of I'(h,— f,&), lie to the right, and the points

a;—n—1

f:

o (t=1,..,n;97=20,1,2, ..,

which are poles of I'(1— a;+ «;£), lie to the left of L. Such a contour is possible
on account of (1.2). These assumptions for the H-function will be adhered to
throughout this paper. )
EBxplanations of the symbols used.
Hereinafter a function which is either continuous or sectionally continuous
and whose orders for small # and large # are as follows

= O(z%) ~ for small

f(@)

= O(2” exp (aw)) for large z,

where «, # and a are real or complex will be represented symbolically as f(x) €
€ Al B, a). '
Also
a) N, 8 will always denote positive integers s;
b) AN, ) will stand for «/N, (¢4 1)/N, ..., (¢ + N —1)/N;
¢) (= f, ) for the pairs («+f, o), (x— p, 0);
d) AN, o« ) for AN, «+f), (N, x— B).

In the next section we shall establish relations concerning the transforms

defined below:
Verms transform [10] given by

@3) V {f(@); oy 75 5} = s [(sw)3 oxp (— hsa) W, (50) f(a) da;
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Mejer transform ([6] p. 209) defined as

(1.4) Mif(@); v, s} = \/is f (s2)t Kofs) f() d(a);

Laplace transform represented as
(1.5) p(s) = Z{f(x); s} = S{eXP [—sz]f(2)dw .
Both the transforms given by (1.3) and (1.4) reduce to (1.5) if we put

k+7r=1% and » = -+ } in them respectively.
We shall also represent (1.5) symbolically as ¢(s)==7(=).

2. — Theorem 1. If

(2.1) . f(s) = M{g(@)p(x); v; s}

and

(2.2) ste(se) = V{h(w); &k, ; s} ,

then

(2.3) f(s) = (g)% st af hi—t) V{wto-tg(we) Ky(szo); k, v; 13 d2,

provided that: h(z) € A, f, a) [R(a)<0]; g(»)e Ay, 6,b), o g(z) ¢(x) Ku(sz) €
€ L(0, oo); R(s)> R(b); Rla+2r+1)>0; Re-+1)>0; 6>0; R(r+r4
+ 90+ 86— 14y +1)>0. |

Proof. Interpreting (2.2) with the help of (1.3), we get
(2.4) (s9) = -2 [(sty—* exp (— & st] Wy, (st)h(z) dt ,
0
where E(s) > R(a), 0> 0 and R(«+» 47 - 1) > 0, therefore

@) = gr-Yo [(ptlog)— exp (— Liztlo) W, (& o t)h(t) At .
(1]
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Using the above value of ¢(x) in (2.1), we obtain

194

2\t [
(25)  fls)= (-) Sf(sm)%lfv(sw)g(m) X

X [ 1Yo f(tatloy =4 exp (— Lt lo)W, (txo)h(3) df] dw .
[+]

On interchanging the order of intergation in (2.5), we get

o\t [
(2.6)  fls)= (7—!) sft'*1}h(t)><

=)

X[ [(s) Ky(sw)atlor1d exp (— Ligilo) W, (tr1/o) g(z) dz] df .

0

Putting 2=y in the inner integral of (2.6) and interpreting the result
thus obtained with the help of (1.3), we arrive at the required result.

All that remains now is to justify the interchange of the order of inte-
gration in (2.5). For this wenotice that since () € A(e, B, ), we have on taking

U =t-texp (— L tallo) Wl:,r(twlld) h(t) ,

~prirte for small ¢
U
~ B3 exp (__ f(atfo — a)) for large ¢.

Thus ¢-integral in (2.5) is absolutely convergent when R(ax + » - » 4 1)>0
and R(a)<0.
Also on taking

U =gilotriiotid exp (— Ltle) W, (t0le) Ky (sz) g(2)

~~ gUlotrirtio—ttvotyot1) for small

U
~ gllotr+iti=1+59) exp (— tp1lo) exp (— w(s — b))  for large .

So wx-integral in (2.5) is absolutely convergent when B(s) > R(b), and
R(rd+r+4+1+4+30—14 ov+y0)>0.

Finally f(s) exists when x*g(w)w(w)KV(sw)eL(O, o). 8o the inversion of
the order of integration in (2.5) is justified under the conditions stated with
the theorem by virtue of De La Vallée Poussin’s theorem ([2] p. 504).
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Theorem 1 (a). For kv =4, Theorem 1 takes the following form: If

1(s) = M{g(w)p(@); v; s}

and
stp(s9) = Z{h(x); s} ,
then
(2.7) Hs) = (;)1 s*af }-L—(t—t—) X L{wto-1 K,(sa°) g(w°); ¢} dt

where:  h(z) € A(a, B, a) [R(a)<0], R(e+1)>0, o> 0,9(x)c Ay, 6,b), R(s)>
> max {R(b), 0}, #* g(2)$(x) K,(sz) € L(0, co) and R(1— I+ yo + §o =+ v6)>0.

If we take 6 =1=1 in Theorem 1 (a), we get a theorem obtained by
Sharma ([9] p. 362).

Theorem 1 (b). The well known property of Laplace transform ([4] p. 129)
reduces Theorem 1 (a) to the following form, if we put ¢ =1 and v = + L therein: If

f(s) = Z{g(@)p(®); s}, s'p(s)= L{h(x); s},

then

2.8 f(s) = mﬂ F{ai-tg(z); s+ 1 di

(2.8) (O)=s | - ¢ g); ,
]

where

hz)e A, B, a) [R(a)<0],  g@)ed(y, 6,b),

R(s) > max [R(b), 0], R(a+1)>0, R2—1+9)>0 and g(x)p(x)exp (—sz)e
€ L(0, oo).

Special cases of Theorem 1 (b).

Corollary 1. If we take g(z) = exp (— ax°), ¢(x) = exp (ax)p(x), h{z)=

=0(z) in Theorem 1 (b) and replace 1 by 2 — 1 therein, we get the following
_ result. If

Hs)=w(s), s**exp (as<)p(s)=0(),
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then

w0

(2.9) fi) = st [ 000 33 [ 0+ 59

(6—1/o,1)
(0, o) ] dz ,

where O(z) € A(e, B, b) [R(b)<0], Rla+1)>0, R(1)>0, RF+1—1)>0 and
the following set of conditions is satisfied:
i) 0<o<l, R(s)>0;
i) o=1, B(s)>max[R(— a), 0];
i) o>1, R(a)>0 and R(s)>0.

Proof. We would like to sketch an outline of the proof of the above co-
rollary, though it is a particular case of Theorem 1 (b) because the function
exp (— az°) does not belong to A(y, d, b) as required by g(z) of the Theorem 1 (b).

We have [4]
(0, 0)
I—1fo, 1]’

where - E(l) > 0 and the following set of conditions is satisfied:

(2.10) zlexp (— ax®) = “‘”"”“”H};i [a,s—‘f

i) 0<o<1, R(s)>0;
ii) o=1, R(s)> R(— a);
iiiy o>1, R(a)>0.

Using (2.10) and proceeding in a manner similar to that of Theorem 1 we
arrive at the required corollary,

Particular case. If we replace s by p in Corollary 1 given above and then
substitute o = N8 there, we arrive at a theorem given by Saxena (I7] p. 43).

Example. If we take
P(@) = w0 exp (— §2°) Wy, .(27)
in Corollary 1, we have [4]

0,0), 1—c—Fk, 1)
(F—c£m1)

| =1,

(2.11) p(w) = Hyj [8“’

where R(s) >0 and R(1— ¢o + ¢/2 4 70) > 0.




[7] SOME THEOREMS ON INTEGRAL TRANSFORMS 7

Also, on account of a well known identity for the G-function ([3] p. 221,
equation (69)), we have

e () pls) = oy O [s-ﬂ‘

Therefore [4] yields

plreo—2

(2.12) st exp (s0)p(s) = pr gy Has [@”’

G£n1)
(—k, 1), 2—1—co, a)] ’

where R(s)>0, 1<<o<(3 and R(l 4 co—1)>0.
Applying Corollary 1 in the values of f(s) and O(x) thus obtained, we geb
the following integral:

o—lc, 1:, i [wﬁ

(3£ 1)
(0, o)

% 1), (2—1l—co,q)

(2.13) f pireo—2 [l [(m—}— 8)
0

1
~ LG -k nms [

GF+exnl) ]
)
§

(1,0), (¢c+ %, 1)

where 1<o<3, R(s)>0, R(l+c¢c—1—0ck)>0, R(1)>0, and R(2 4 o—
— 2¢0 4 2r0) > 0.

Particular case. If we replace s by pN(S)-s/¥, & by tNS-5¥ and substitute
o =N|S in (2.13), we get an integral given by Saxena ([7] p. 48).

Corollary 2. Again on taking g(x) = exp (— az—°), ¢(x) = exp (ax°) p(x),
h(z) = 0(x) in Theorem 1 (b) and then replacing 1 by 2 — 1 there, we get the fol-
lowing result: If

f(s) = p(@), and s*texp (as—)y(s) =0(z),

then

(0’ 0‘)7 ('—g H 1)] dz 3

where 0(x) e A, B, b) [R(b)<0], 0> 0, R(s)>0, R(a)>0 and R+ 1)>0.

(2.14) 1(s) = satlo f O(w) Hg:s [a(m—{— 5)°
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Proof. Here also we sketch the proof on account of the reasions men-
tioned with Corollary 1.
We have [4]

(2.15) a1t exp (— ax=o) == a,l—llaHg:g [asa

1—1
(17 G)a ”“;" y1 ’
where o> 0, E(s)>0 and R(a)> 0.
With the help of (2.15), and preceeding as indicated in Theorem 1, we get
the required result.

Particular case. If we replace s by p and then put ¢ = N/§ in Corollary 2,
we get another theorem given by Saxena ([7] p. 49).

Example. On taking
P(@) = z0exp (— Lo o) W, .(z7) ,
we have [4]

(14+¢—k 1)
(1,0), G+ et l)] = f(s),

(2.16) p(x) = HpY [8"

where ¢ >0 and R(s)> 0.
Also, on account of a well known formula for the G-function ([3] p. 221),

k-}—l]
==t I

52t exp(s~2) pls) = 31wty [0

Therefore [4] gives

gplteo—2 (k+1,1)
” 2-1 — A = £ N
(2.1/) s eXp (S U)QP(S) - F(%‘——“k :’: ’)’) H1.3 [wa % i 7, 1)’ (2——Z—CO’, G):I )
= G(m) ’
where R(s)>0, 0<o<3, R(l—}—ca——l—}—%im)>0.

Applying Corollary 2 to these values of 6(z) and f(s), we get the following
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integral

h+1,1)
("3? :JL: 7y 1)9 (2'_ Z'—'CO', U)

(0, U),(-——% , IH dx

(c—Fk+41,1)
(1,6), G +exr, 1)}’

]H@Bm+wv

(2.18) j‘wawﬂzzgnga

1]

%F%mkiﬂHﬁF“

where R(s)>0, 0<o<3 and R(l+ co— 1+ 0/2 4 7o) > 0.
On taking ¢ = N/8 in (2.18) and replacing # by tN8s¥, § by pN&s¥
there, we easily get an integral obtained by Saxena ([7] p. 51).

Corollary 3. If we substitute g(z) = (1 + 2°)~%, ¢(x) = (1 + x°) p(x) and,
h(x) = 0(z) in Theorem 1 (b) and then replace [ by 2 — 1 there, we get the follow-
ing corollary: If

f)=pl@), 7L+ ) pis) =6(@),

(6— o, 1) ] da
?

s L .
(2.19) f(s) = T f O(@)H: I:(w“{" s) 0, o), (e— 1o, 1)

where B(z) € Ao/, f, a) [R(a)<0], B(s)>0, 6>0, R(l)>0, R +1)>0 and
R +1)<0.

Proof. We have [4]

si-1
(2.20) 1+ wo)ye = o) H3i [8‘”

(1—106), (1—a, 1)
(0,1) ]’

where E(s) >0 and R(l)>0. With the help of {2.20), Theorem 1 (b) reduces
to the required corollary forthwith.

Particular ease. Replacing s by p in Corollary 3 and then putting ¢ = N/§
in it, we get a known result ([7] p. 56 equation No. 62).

Example. On taking

§2H1 + so) P y(s) = s 2 Fa(a, B, y; — 5°)
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we easily have [4]

: I'(y)
(2.21) - Ve =T

w Hyg [fv"

(1, 1), (7, 1) ]
(1), (8, 1), (0, 0) !

where E(s) >0, Blaoc—c¢-+1)>0 and R(fo— ¢+ 1)> 0.
Again [4] gives .

I'(y)

- _ (2—l—0, U)) (O(H')'—{v-l, 1)a (ﬁ—T-l—l, 1)
(2.22) fs8)= To—aTo—p " LH.%.’%[S d ],

0,1), (1—yp, 1)

where R(s) >0 and R(l+c¢—1)>0.
Putting these values of §(x) and f(s) in Corollary 3, we get the integral

(1, 1), (». 1)
(o, 1), (B, 1), (o, 0)

1—1s, 1) ]dm _

]H [(”“r 0,0, (r—a—p—ifo, 1)

(2.23) f e Bt [ma
0

_ Tly—a—B) () I'()
T TIy—a)I(y—p)

@—1I—0c0), A+ a—yp, 1), A+ f—y, 1)]
’

gl—e—1l XHI,‘? [8—6
&2 0,1}, 1—yp, 1)

where Rac— ¢+ 1)>0, R(fo—c¢+1)>0, R(l+c¢c—1)>0.

On taking ¢ = N/8 in (2.23), we get the following integral

(2.24) f w—chéssm[(ﬁ)
0
z -+ s\¥
edles

_ Iy —oa— ) () I'(B) slmo=1 N i=# Qr=a—B(Qz)hes—y-1 5

Ly —~a) (y—p8)

4(8, 1), 4(8, )
A(S, «), A8, B), AN, c)]

4(8, 1—18/N)
A(N,0), A8,y —a—f— lS/N)]

A(AT: 2—Z—C), A(S’ 1 + “—7’)’ A(S5 1 -+ 13—’}’>]
)

% GETF2s f\_r ¥
Nio9,28 s 4(8,0), 4(8,1—vy)

where R(l+c¢—1)>0, B(aN—cS -+ 8)>0, and BN —c8 4+ 8)>0. (2.24)
was also given earlier by Saxena ([7] p. 58). There seems to be some misprint
in the powers of N and § in his result. '
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3. — In this section we shall establish a theorem concerning the transforms
defined below:

(a) Generalized Stieltjes transform given by

(3.1) S0 a3 8 = s a)f(a) do;

]

(b) Mainra transform ([5] p. 24) defined and represented as.

(3.2) W{fla);n+ % k+ 4,758 =

— s (s exp (— }50) Wiy, o(52) (@) dov

Theorem 2. If

p(s) = S{w+ f(z); o; s}
and ‘
sutof(s0) = W{p(x); n+ +; b+ 5573 s},
then

(3.3)  pls)= F‘(’a)svﬂ—w/a X

X f (@) H3L [Sw"
0

where ¢(x) e A(y, B, a) {R(a) <0}7 o>0, E(s) > 0, R(co—p)>0, B(—ntr+
+ 9 +1)>0, Ry +oa— co) >0, and Blco—n+r -+ 1)>0.

(-—c—1/o, 1), (—k—mn, o) d
(—n+L7 0), (a—c—1/o, 1) ’

Proof. We have with the help of (3.2)
$+00 f(58) = 5 [(st)~7~* exp (— § 5t) Waps,olst) (1) A2 ,
0

where R(s)>0 and R(— 47+ y -+ 1)> 0; therefore

(3.4)  aoHf(a) = ae-iiile f (ta3fe) 13 exp — @10 Wy (1020 (0L,
Jo
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Also, with the help of (3.1) and (3.4) we have

(3.5) wwzsfw+Mﬂ%HwﬂfMWW%x

0
¢
X exp — 3 atlo W, (tzt/e) p(t) dt} da.
On interchanging the order of integration in (3.5) we get

(3.6) ww=sfrwwm[fw+wa

[4
X gtloteo—nti-o) gxp — 5 wto W, (toilo) dw] ds .

Putting #'/s — £ in the equation (3.6) and evaluating the £-integral thus
obtained with the help of the following formula [4]

(3.7) Wiza+ o)y n+ 55 5+ 4,75 s} =

—~og—1l -G
7S R
IY“) 3.2 a

n—1Ltr0), 1—a,l)
0,1, g+k—10 |’

we arrive at the result after a little simplification.
To justify the inversion of the order of integration in (3.5) we observe that
if we take

U =tntexp (— Ftalo) W, (t21o) p(t)

~ O(t—n£r+?) for small ¢

U
~ O(tb+i-n exp (— t(zYs — a))  for large ¢,

thus ¢-integral in (3.5) is absolutely convergent when R(a)<0 and Bly—n+
4+ 1)>0. ,
Also if we take

U= (s+ x)waxllo(ca~7]—-a+~§) exp (— %thlu) Wk+g,r(tm1/")
NO(mllo’(ca—n—aiHl)) for small o

LT
~ O(wtlolo—n-otkil-a0) gxp — tx1ls)  for large « .
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Therefore z-integral in (3.5) is absolutely convergent when R(ecoc—n 4+ --1)>0
and o> 0. Also y(s) exists when RB(y—n 4 r + 1)>0, RB(y + aoc— ¢5) > 0,0> 0,
R(s)> 0 and R(coc— f)> 0. , '

Consequently the inversion of the order of integration in (3.5) is justified
by virtue of De La Vallee Poussin’s theorem ([2] p. 504). This completes the

proof of Theorem 2.

Corollary 1. On replacing s by p and then putting o = N|S in Theo-
rem 2, we get the following result: If

Y(p) = S{z*+1f(2); o; P}

and
prISUD f(pISy = W{p(x); 1+ &; b+ 4, 75 9},
then
‘/’(P) — p0+1—o;+S/1\’Sa—lNk~n~é(2n)-§—N/‘l—S %
(3.8)

A(8, 1—c¢— 8|N), AN, —k——n)] 4
b

2 m N
x f P(@) L s [ps (57) AN, —n +7), A(S, x—c— §/N)
: _

where $(@) € (y, B, a) [R(a)<0], R(p)>0, R(cN~—p8)>0, R(— ntr+y+
+1)>0, B(eN—kS + 8 4 r8)> 0, and R(yS -+ aN — cN)> 0.

Corollary 2. On replacing 1 by So/N—1,¢ by —8l,n by —7r and %
by k— % in Corollary 1, we get o known result (18] p. 710).

Thanks are due to Dr. K. C. Sharma for his keen interest in the preparation
of this paper.
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Ab‘stra,ct .

In ihis paper first we establish a theorem exhibiting inmteresting imier-connections
exhisting between two generalized Laplace transforms; the kernel of one of these transforms
is a modified Bessel function of the second kind while that of the other is product of expo-
nential and Whittaker functions. Next we obtain a number of interesting theorems involving
Laplace transform as special cass of our main theorem; now we evaluate certain integrals
involving Fox’s H-function (which is the one of the most general funciions) with the help
of our theorems. Newt we establish a theorem which interconnects a yet another generalized
Laplace transform with a generaliced Stieltjes transform.

On account of the general nature of the theorems established in this paper, several theorems
obtained earliar follow as their special cases.



