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LIEVEN VANHECKE (%)

Submanifolds of almost hermitian manifolds

and normal connection. (¥*%)

Introduction.

In the theory of almost hermitian manifolds there exist for some spe-
eial classes interesting identities for the RIEMANN-CHRISTOFFEL curvature
tensor [5], [4];. In particular, the manifolds such that R(X, Y, Z, W)=
=R(X, Y,JZ,JW) are called para-K dhler manifolds [8] or F-spaces [9]. A lot
of properties for Kdhler manifolds are still valid for this more general class
of almost hermitian manifolds.

On the other hand, complex submanifolds of Kéahler and nearly Kihler
manifolds are such that the second fundamental form is complex bilinear
[7], [11]; and this property implies that the submanifolds are minimal.

In this paper we treat complex submanifolds of para-Kihler manifolds
such that they have complex bilinear second fundamental form and we call
them o-submanifolds. In particular we consider the associated normal connec-
tion and show that some theorems proved in [2] for Kihler manifolds still
hold for this more general class.

1. - Let M be an n-dimensional C"’ riemannian manifold with Lmvi-
Crvita connection V. Then the curvature tensor B of M is given by

B(X,Y)= V[x,y]'“ [Vx, Vy]
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for any X, ¥ € (M) where Z'(M) is the Lir algebra of O® vector fields
on M. Further, let {E,} be a local orthonormal frame field on M. Then the
Ricei tensor S(X, Y) is defined by

S, Y)= zR(X 17,, Y, Ey,
i=1
where R(X, B,, Y, B,) = g(R(X, E,)Y, E,) and ¢ is the metric tensor of M.
Let w: M — 7 be an isometric immersion of M into an m-dimensional
riemannian manifold I with connection 6’ and metric tensor §. Then we have

V¥ =V Y +0(X, Y),

where VyY denotes the component of Vi ¥ tangent to M and X, Ye Z(M).
o is a symmetric covariant tensor field of degree 2 with values in Z(M)*
‘We have further

VeV =—A,X 4+ D; ¥,

where: N is a normal vector field. — A, X (resp. DyXN) denotes the tangential
(resp. normal) component of V,N. D is the linear connection in the normal
bundle 7(M)* and A4 is a cross-section of a vector bundle Hom (7'(M)*, S(M ))
where S(M) is the bundle whose fibre at each point is the space of symmetric
linear transformations of T, (M)—T,.(M), me M, i.e. for any normal vector
NeT, (M), Ay: T, (M)->T,(M). We have

§(N, (X, Y)) = g(Ax X, Y)=g(X, 4yY).

¢ and A are called both the second fundamental form of M and D is called
the normal connection.

A local normal vector field N # 0 is called a parallel section if DN = 0.
Let R+ be the curvature tensor associated with D, i.e. RHX, ¥) = Dy p»—
—[Dy, Dy]. Then the normal connection is flat if R vanishes identically.
The normal connection is flat if the (real) codimension is one and if the (real)
codimension is higher, then the normal connection is not flat in general.

The equations of Gauss and Ricci are given respectively by

L RX, Y,z W)=
=R(X, Y, Z, W)+ §o(X, W), (X, Z2)} — §{o(X, Z), o(¥, W)}

(2) {R(X, V)N =RNX, Y)N —o(dyX, Y) + o(X, 45 Y)
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or

(2" R(X,Y,N,N'y=R~X, Y, N, N')+ g([4y, Ax] X, Y)
where X, Y, Z, WeZ(M) and N, N'e Z(M)*.

2. —~ Let (M, g,J) be a C° manifold which is almost hermitian, that
is, the tangent bundle has an almost complex structure J and a riemannian
metric ¢ such that g(JX,JY) = g(X, Y) for all X, Ye Z (). Then dim 7 =
=m = 2p and J] is orientable. ’

Moreover, let M be an almost hermitian manifold of dimension n = 2q
and f a complex immersion of M into #. Then, for each m € M we identify
the tangent space T,(M) with fu(Tw(M))C Tym(IL) by means of f.. Since
fxog=¢ and Jofs=jfrod’ where ¢’ and J’' are the hermitian metric and
the almost complex structure of I respectively, ¢’ and J' are respectively
identified with the restrictions of the structures g and J to the subspace
Fo( Ton(3D)).

Let K(X, Y) denote the sectional curvature for the 2-plane spanned by
X, Yel, (M) and H(X) the holomorphic sectional curvature of the 2-plane
spanned by X and JX.

An almost hermitian manifold M such that

~ ~

VoY =0, X, Yex ()

is a Kéhler manifold and a nearly Kédhler manifold {4],, [4]. (an almosi
Tachibana space or K-space [10]) is defined by

Vi) X =0 or equivalently V() Y+ Ve(d) X =0

for all X, YeZ(M). We proved in [11], that if M is a complex submanifold
of a Kéhler or nearly Kéhler manifold, then the second fundamental form
of M always satisfies

3) oW X, Y)=o(X,JY) = Jo(X, Y) for all X, Ye Z(M).

This means that o is complex bilinear [7].

In what follows we only consider complex submanifolds of an almost her-
mitian manifold M such that (3) is satisfied and therefore we give the fol-
lowing definition.

Definition. A4 o-submanifold M of an almost hermitian manifold is a
complex submanifold satisfying (3). - :
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It is easy to prove the following theorems.
Theorem 1. A o-submanifold of an almost hermitian manifold is minimal.
Theorem 2. The condition (3) is equivalent with
(4) A, X=JdA,X, Ay JX - JAy X =0
for all X e Z(M) and N e Z(M)*.
3. — Let M be an almost hermitian manifold and M a o-submanifold.
Suppose that N is a unit parallel section in the normal bundle. We have

DN =0. Then RYX, Y)N =0 for all X, Y e Z(M). From the equation of
Riccr we find

RB(X,Y,N,JN)=g([Ax, An] X, )
and with (4) we get
(5) R(X,Y,N,JN)=—2¢g(JA%LX, Y).

Let now H(X, N) denote the holomorphic bisectional curvature[3] for the
pair (X, N):

H(X,N)=RZX,JX, N,JN)g (X, X)g~'(N, N).
If X is a unit tangent vector of M, then it follows from (5)
(6) H(X,N)=—g(dyX, 4y X)
and hence

Theorem 3. Let M be a o-submanifold of an almost hermitian manifold M.
If there is o unit tangent vector X such that for all wnit normal vectors N the
holomorphic bisectional curvaiures H(X, N) are positive, then the normal bundle
admits no parallel section.

A unit section in the normal bundle such that Ay = 0 is called a geodesic
section. It follows then from (6)

Theorem 4. Let M and M be as in Theorem 1 and let N be a unit parallel
“section N in the normal bundle. Then for all tangent vectors X the holomorphic
bisectional curvature H(X, N) vanishes if and only if N is a geodesic section.
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4. — Now we consider an almost hermitian manifold J7 and the tensor A
on J7 defined by

MX, Y, 2, W)=RX,Y,Z, W)—R(X, Y,JZ,JW)
for X, Y, Z, WeZ(M). A manifold J such that
(7 MX, Y, Z, W)y=0
is called a para-Kdhler manifold [8] and since (7) is equivalent with
(7 Rx,¥)Jd=0
such a manifold J7 is an F-space [9]. In (7') R(X , Y) operates as 4 derivatiqn

on the almost complex structure J.
It is inferesting to note that for an F-space we have

R(X,Y, 2, W)=RJX,JY,JZ, JW)

and since this relation defines an RIK-manifold [11],, [11],, [11], we obtain
that an I'-space is an RK-manifold. Hence we have the following identities:

KX, Y)=EK(JX,JY), E(X,JY)=EK(JX, T),

8(X, Y)=S8(JX,JY), S(X,JY)+ SWX, ¥)=0.

Remark. H. Yanamoro has given in [12] an example of a nonkahlerian
quasi-Kahler manifold (or *0-space) satisfying (7) and in[9] it is proved
that a para-K#hler manifold with nonzero constant holomorphic sectional
curvature is a Kéhler manifold.

A gquasi-Kdhler manifold or *0-space is an almost hermitian manifold
such that

Ve )Y+ V()T Y =0

for all X, Y e (M) [4],, [6).
It follows easily from (1) and (3):

Theorem 5. A o-submanifold of a para-Kdihler manifold M is also
para-Kdhlerian. '
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5. — In what follows we consider now ¢-submanifolds of para-Kihler
manifolds in relation with the normal connection. First we prove

Theorem 6. Let M" be a o-submanifold of a para-Ké&hler manifold I
such that the mormal connection is flat. Then, the Ricci tensors 8 and S of

M» and M™ satisfy the relation 8(X, Y)= S(X, Y) for all X, Y € Z(M™).

Proof. It follows from the GaAuss equation and from (3) that

(8) S(x, v) :EQ{R(X, B, Y, B)+ RX,JE, Y, JE)} +
oe=

+ 8, Y)+ 2 ZQ{O’(X, £, oY, Et)}

i=1

it dim M =m =2p, dim M =n = 2¢ and {E;, JE;} denote an orthonormal
local frame such that ¢ (resp. o) denotes the tangential (resp. normal) vectors
of the frame.

Suppose now that the normal connection is flat. Then, by Proposition 1.1
in ([2], p. 99), there exist locally m — n mutually orthogonal unit normal vector
fields ¥,, r=1, 2, ..., m—n, such that DN,= 0. In what follows we suppose

L, =N,_, a=1,2,...,p—q.
Hence we get from (5)
(9) RX,Y,HB,6JE,)=—2gJA% X, Y)
where 4, = A, .

Using the first Bianchi identity and the definition of a para-Ké&hler mani-
fold we have
Rx,B,Y,B)=RX,E,JY, JE,)=
=—RUE,,JY, X,JE,)+ EX,JY, B, JE,),

RX,JE, Y,JE,) =—RX,JE, JY, )

and so

(10) Ex,B,Y,B)+ RX,JB, Y,JE,)=RX,JY, B,k JE,) .
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From (8), (9) and (10) it follows then

r—aQ Q
(11) S(X’ Y) = S(Xy Y) —2 zg(*‘iiXy Y) '1“ 2 ZQ{U(X, Ei)y G<Y7 Ez)}
a=1 i=1
and with (3) we may find
q ] p—q Y
(12) 23 9{o(X, By, 0(Y, B} =2 3 g(43 X, Y).
{=1 x=1

Combining (11) and (12) we find the required result.
We prove now that the converse of Theorem 6 holds if the complex codi-
mension p —gq is one.

Theorem 7. Let M* be a hypersurface of a para-Kdhler manifold =,
Then the normal conmection is flat if and only if S(X, Y)=8(X, X) for all
X, YeZ(Mr).

Proof. That the condition is necessary is proved in Theorem 6.

Suppose then S(X, Y)=8(X, Y) for all X, YeZ(M"). It follows from
{8), (10) and (12)

R(X7 JY, Bory JBpy) = “Zg(AfﬁlX’ X)
for any normal vector field ¥,,.,. Hence, this implies with (2') and (4)
RYX,JY, B, ,JJE, ,)=0

and from this we see that R+ =0, i.e. the normal connection is flat.
Finally, we wish to prove a corollary from Theorem 6 and one of The-
orem 7. Therefore, we consider a para-K#hler manifold #/= such that this
manifold is an Einstein space, i.e., there exists a function g on M such
that §(X, Y)=gg(X, Y) for X, YeZ& (). The function 5 is called the scalar
curvature of J™ and it is well known that o is constant if m > 3.
It follows at once Theorem 6 and Theorem 7:

Corollary 8. Let M" be o o-submanifold of a para-Kihler Einstein
space Mm. If the normal connection is flat, then M» is also an Einstein space.
Moreover, M and M™ have the same scalar curvature.

Corollary 9. Let M™ be a o-hypersurface of a para-ILdhler manifold
M+2 such that M» and M+ are both Hinstein spaces. If the two spaces have
the same scalar curvature, then the normal connection is flat.
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