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Acyclic color functions on graphs. (*¥)

Introduction.

Bounds on the point-arboricity of a graph have been derived utilizing
degree properties and connectivity properties of the graph and its subgraphs.
In this paper it is shown that the line-connectivity can be used to provide a
better bound on the point-arboricity of a graph. More specifically, if we let
0(G@) denote the maximum line-connectivity of any subgraph of @, then an
upper bound for the point-arboricity of the graph G is half of ¢(G) plus one.
Two proofs are given, the first involves acyclic color functions and is non-
constructive, while the second proof derives a constructive procedure for deter-
mining the acyclic color function on the graph G. In either case, the acyclic
color function requires at most one-half of ¢(@) plus one color values.

Examples are provided to show that the new upper bound on the point-
arboricity of a graph is better than those previously proved.

1. - Reduced acyclic color functions,

We consider only finite graphs without loops or multiple lines. For the
graph @, we let V(@) and E(G) respectively denote the point set and the line
set of G. A subgraph H of the graph @ is said to be an induced subgraph of G
if every line of G which joins two points of H is also a line of H. For a subset 8
of V(@), the subgraph induced by the set S is denoted by <S>. A subset ¢
of F{(G) is called a cutset of G if @ — C has more components than G. If a cutset
C has n lines, then it is called an n-cutset.

(*) Indirizzo: Department of Mathematics, Western Michigan University, Kala-
mazoo, Michigan 49008, U.S.A.
(**¥) Rieevuto: 4-VI-1974.
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An acyelic color function, or an acyclic function, f on a graph ¢ is an assi-
gnement of nonnegative integer values to the points of & such that no cycle
of @ has all of its points assigned the same value. The acyelic color function a
on the graph G is called a reduced acyclic color function, or a reduced acyclic
function, if it satisfies the following condition:

a(v)=min{¢: for each cycle C of @ containing v, the points of ¢ are not all
assigned the same value}, for each point v of G.

A reduced acyclic function represents an acyclic function which is in some
sense locally minimal. To determine a reduced acyclic function on a graph &
begin with any acyclic color function f on @, if this acyclic color function is
not a reduced acyclic function, then the value assigned to some point of G
may be reduced and another acyclic color function obtained. Continuing this
process one must eventually obtain a reduced acyclic function ¢ and e is said
to be obtained from f by reduction. However, a reduced acyclic function for
a given graph need not be unique. For example, the graph in Figure 1 has
two non isomorphic reduced acyclic functions assigned to it.

1 0

Figure 1. 4 graph with two reduced acyclic functions.

It follows from the definition that if the degree of a point is at most one,
then a reduced acyclic function must assign the value zero to that point.
Likewise, if the point v is not on a cycle, then its value must be zero. It is
not difficult to see that for any reduced acyclic function ¢ on the graph G and
for any point v of G,

a(v)<[d(v)/2],

where d(v) denotes the degree of v in G. We are now ready to prove some results
about reduced acyclic functions.
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Lemma 1. Let S be an n-cutset of the graph G and let @, and G, be dis-
joint induced subgraphs of G — 8 such that G = (V(G;) U V(G,)>. Let a; and a,
be reduced acyclic functions on G, and G, respectively. Let m = max{a,(v): ve
e V(Gh)}. Then there exists a reduced acyclic function a on the graph G such that

= a,(v) if ve V(G,),
a(v)
< max {m, [n/2]} if ve V(Gy).

Proof. Let {HJ},_,, . . be an m+ 1 partition of V(@,) such that a, is
constant over each set H,;, a,(v) =1 if ve H,, and such that each of the sets
H,, H,, ..., H, is incident with at least two lines of § and each of the sets
Hyy, Hyp,y ..., H,, is incident with at most one line of 8. Let m’= max {az(v):
ve V(Gy)} and let {K},., , . . bea partition of V(G,)such that a, is constant
over each K,. Define the function f on G as follows: (1) for each ve V(@,),
let f(v) = ay(v); (2) for each j, 0<j<m, let f(v), v € H,, be the minimum non-
negative integer different from both the one assigned to H,, 0<i < j, and the
integer s if there are at least two lines of § joining points of H, to points of K ,.

Since there are at most [n/2]—1 pairs of lines of § joining the set H, to
a set I, the choice of a nonnegative integer for H, need only be from j--
+ [#/2]—1¢ different nonnegative integers. Hence the maximum nonnegative
integer required for the sets H,, H,,..., H, is at most [#/2]. Furthermore, the
nonnegative integer ¢ associated with the set H;, t< j<m, satisfies the ine-
quality ¢<j, so that f(v)<max{m, [n/2]} for each ve V(Gy).

Clearly f is an acyclic color function on G. Let a be a reduced acyclic func-
tion on G obtained from f by reduction. Since a, was a reduced acyclic func-
tion of G, it follows that a(v) = f(v) = a,(v) for each ve V(&,). Furthermore,
a(®)<f(v) for each ve V(G,), which completes the proof.

2 - Bounds on the point-arboricity.

The point-arboricity o(@) of the graph G may be characterized as the mini-
mum number of color values required in any acyeclic color function on the
graph @. Clearly @ must posses a reduced acyclic function with maximum
value o(G)—1. An upper bound on the point-arboricity of a graph is now .
given in terms of cutsets and the point-arboricity of the resulting subgraphs.

Corollary 1. Let 8 be an n-cutset of the graph YG and let G, and G, be
disjoint induced subgraphs of G— 8 such that G = V(@)U V(G,)>. Then the
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point-arboricity o(@) satisfies the inequality
(1) 0(@) < max{g(64), 0(Gs), 1+ [2/2]} .

Proof. The graphs G, and G, have reduced acyclic functions with maxi-
mum values g(@;)—1 and o(@,)—1 respectively. By Lemma 1, G = {V(Gy) Y
U V(&,)> has a reduced acyclic function with maximum value at most

max{o(Gy)—1, o(G.)—1, [n/2]},

and (1) follows.

‘We point out here that by a simple modification of the proof of Lemma 1,
Corollary 1 may be proved without the use of reduced acyclic functions.

We note that inequality (1) must produce an equality unless the maximum
on the right is attained by 1+ [#/2]. We now investigate the case where the
n-cutset § is a minimum cutset of @, that is, S has the fewest number of lines
possible for any cutset of the graph @. In this case, the nonnegative integer n
is called the line-connectivity of @ and is denoted by A(@). Since the trivial
graph XK, has no lines, no line-connectivity is associated with it.

A graph G is said to be eritical with respect to point-arboricity, or simply
eritical, if for each proper subgraph H of @, o(H) < ¢(G). For each positive
integer n>2, the complete graph K,,., has point-arboricity » and is critical.
It is easy to see that the only critical graphs with point-arboricity two are
the cycles. The following result provides an upper bound for the point-arbo-
ricity of critical graphs in terms of the line-connectivity (see [3]).

Lemma 2. (BoUucHER) Let G be a critical graph. Then
(2) o) <1+ [UG)[2].

Proof. Let § be a A(@)-cutset of G and let @; and G, be the components
of G— 8. From Corollary 1 it follows that

e(6)<max {o(G), o(G), 1-+[A&)[2]}.
Since G is critical, o(G;) < o(G) and ¢(G;) < o(@). Thus (2) follows.
Clearly (2) does not hold for arbitrary graphs, since the disconnected graph
9K ,.-, has point-arboricity », but line-connectivity zero.

In [5] MaTULA defined the sirength o(G) of the graph G as follows:

o(@) = max{AM(H): H is a subgraph of G}.
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Theorem 1. For any graph G,
(3) (@) <1+ [0(G))2] .

Proof. By deleting points and lines from @ we must eventually obtain
a subgraph H of & that has o(H)= o(@), but which is critical. Then Lemma 2
implies that o(H)<1--[A(H)/2]. Since A(H)<o(GF), inequality (3) follows.

From Theorem 1 it is evident that every graph G has a reduced acyclic
function which is bounded by [¢(G)/2], however the proof of this theorem
provides no insight into how to construet such a reduced acyclic function.
For applications it is usually useful to actually have a constructive approach.
We now demonstrate a method for constructing a reduced acyclic function
on the graph ¢ bounded by [¢(G)/2].

In order to provide a constructive procedure, it is convenient to utilize
the concept of a «slicing » of a graph (see [4]). For notational purposes, let
C,=¢. The ordered partition of the lines of the graph G, Z = (C,, C,, ..., C,.),
is a slicing of G if C; is a cutset of

(4) G—UIC,. (I<igm).

f=0

Furthermore, Z is called a narrow slicing of G if each cutset C;, 1<i<m, is
a minimum cutset of some component of (4). We list a result of MATULA [5]
which is necessary for the following construction.

(A) The mazimum number of lines in any cutset of a narrow slicing equals the
strength of the graph.

It was shown in [5] that a narrow slicing of a graph can be found construc-
tively from the slicing algorithm. We now utilize Lemma 1 and (A) to construct
a reduced acyclic function on G bounded by [¢(G)/2].

Assume that G is not a totally disconnected graph, for then a(v)= 0 for
each v € V(@) is the required reduced acyclic function. Let Z = (C,, C,, ..., C,,)

be a narrow slicing of @. Then G — Lj C; is a totally disconnectéd graph and
we define the reduced acyclic functio:zzm such that a,.(v) =0 for each ve V(G).
The constructive procedure of Lemma 1 can be utilized to provide a reduced
acyeliec function @,-, on G—mLTCi bounded by [o(G)/2], since (A) implies that
|G, |<6(@). Proceeding 1'ecu;‘=s‘i)vely, if a; is a reduced acyelic function on

10
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i
@ — U C, bounded by [¢(G)/2], then Lemma 1 may be utilized to yield a
ie=0 i—1
reduced acyclic function a,—, on G — [ C; bounded by [¢(G)[2], since (A) im-
i=0
plies that |C;|<¢(@). This procedure ends with a reduced acyclic function
on G bounded by [¢(G)/2]. We have thus produced a constructive proof of
Theorem 1.
Theorem 1 provides a stronger upper bound on the point-arboricity than
either of the following corollaries proved in [1] and [2]. Let 4(@) and (@)
denote respectively the maximum and minimum degree of C.

Corollary la. (CHARTRAND, KRONK, and WaLL) For any graph G,
(8) o(@) <1 4 [A(&)[2].

Corollary 1b. (CHARTRAND and KRONK) For any graph @,
(6) 0(6) <1+ [(max 8(H)) 2],
where the maximum s taken over all subgraphs H of @G.

The first corollary follows from the inequality ¢(@)<A(G). From the ine-
quality A(H)<d(H) for any subgraph H of G, it follows that

o(G)< max{$(H): H is a subgraph of G}.

The results (5) and (6) are in general weaker than (3), as can be seen from
the graph @ in Figure 2. Here §(G) = A(G) = 4, while o(G) = 3.

Tigure 2. 4 graph G with §(G) = A(G) =4 and o(G) = 3.
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Abstract.

The point-arboricity of a graph G is the minimum nwmber of color classes meeded to

color the points of G so that each color class induces an acyelic subgraph of G. Aeyelic
color fumetions are defined and a discussion of how to construct such functions is provided.
These fumections are used to give a new bound on the point-arboricity in terms of the mawxi-
maum line-connectivity of any of its subgraphs.







