ALDO G. S. VENTRE (*)

A sufficient condition for the existence of an hamiltonian chain in a finite simple graph. (**)

1. - We will consider finite and simple graphs only.

Let's start by giving some definitions and notations ([1], [5]).

A clique of a graph G is a maximal complete subgraph of G. The clique graph K(G) of G = (V, E) is the graph K(G) = (V', E'), whose set of vertices V' is in one to one correspondence with the set of distinct cliques of G, and two vertices u', v' are adjacent in K(G), i.e. $\{u', v'\} \in E'$, if and only if the two cliques of G to which these two vertices correspond have a vertex in common.

We will conform to the following convention. Let an upper case letter C, affected if necessary by subscripts or superscripts, indicate a clique of G, then the same lower case letter, with the same subscripts and superscripts denotes the vertex of K(G) corresponding to this clique in the aforementioned correspondence.

|G| denotes the order of the graph G. E(G), V(G) denote the set of edges and the set of vertices of G, respectively.

 $E_c(x)$ is the set of the edges of C, which meet at vertex x; C-(x) is the clique of order |C|-1, defined by $V(C-(x))=V(C)-\{x\}$, $E(C-(x))=E(C)-E_c(x)$.

If G, G' are isomorphic, then we write G = G'.

^(*) Indirizzo: Istituto di Matematica, Facoltà di Architettura, Università, 80100 Napoli, Italia.

^(**) Ricevuto: 29-V-1974.

Let $\gamma = (x_1, x_2, ..., x_p)$ be an elementary chain of G. γ -neighbour of x_i is each of the two vertices x_{i-1}, x_{i+1} , if i = 2, ..., p-1; $x_2(x_p)$ is the γ -neighbour of $x_1(x_{p-1})$.

- 2. Let G be a graph, such that no two distinct cliques C_i , C_i belonging to it have more than one vertex in common, i.e. $|C_i \cap C_i| \leq 1$, and let K(G) be triangle-less and of order n, then the following properties hold:
- P1 [2]. The set $\{E(C_1), \ldots, E(C_n)\}$ of parts of E(G) is a partition of E(G). Indeed the hypothesis $|C_i \cap C_j| \leq 1$, for any two cliques of G, implies that each edge of G lies in exactly one clique.
 - P2 [2]. No vertex of G lies in more than two cliques.

Indeed if a vertex were in three cliques C, C', C'' of G, in K(G) there would exist the triangle (c, c', c''), which contradicts the hypothesis that K(G) has no triangles.

P3. If the vertex c has degree d in K(G), then |C| > d.

Indeed, let $c_1, c_2, ..., c_d$ be the vertices of K(G), neighbours of c. Let $\{x_i\} = V(C) \cap V(C_i)$, j = 1, ..., d. Property P2 implies that there is no clique of G, distinct from C and C_i having x_i as a vertex. Therefore two distinct cliques, adjacent to C, contain two distinct vertices of C. Therefore $|C| \ge d$.

3. - We are now able to prove the following

Theorem. If $|C_i \cap C_j| \le 1$ for any two distinct cliques C_i , C_j of G and if K(G) is triangle-less and has an H-chain, then G has an H-chain.

Proof. The result is clearly true when $\max_{1 \leq i \leq n} |C_i| = 2$. We just observe that by the hypotheses $|C_i| = 2$, i = 1, ..., n, and G is connected. Furthermore, for any vertex x of G, we have that $d_{\theta}(x) < 2$, because if x were in three distinct edges, i.e. three cliques C_i , C_i , C_k , then K(G) would have the triangle (c_i, c_j, c_k) .

We proceed by induction on the highest order k of the cliques: we suppose that any graph whose cliques have order < k-1, k > 3, has an H-chain, and we show that there exists an H-chain in any graph each of whose cliques is of order < k.

Let C_{i_1}, \ldots, C_{i_l} be the cliques of G, of order k, and γ an H-chain of K(G). Let c', c'' be the vertices of K(G) γ -neighbours of vertex c_i , $s = 1, \ldots, l$ (1).

⁽¹⁾ If there is only one vertex γ -neighbour of c_{i_*} , the proof is exentially the same.

We set

$$\{x'\} = V(C_{i_s}) \cap V(C'_s), \qquad \{x''\} = V(C_{i_s}) \cap V(C''_s).$$

For a given clique $C_{i,}$, by property P2 either

- (i) every vertex of C_{i_*} , distinct from x', x'', belongs to no other clique of G, or
- (ii) there is a vertex x_s of C_{i_s} , distinct from x', x'', and there is exactly one clique C, distinct from C_{i_s} , such that $\{x_s\} = V(C_{i_s}) \cap V(C)$.

In the first case, if x_s denotes a vertex of C_{i_s} , distinct from x', x'', we construct the graph

$$(V(G) - \{x_s\}, E(G) - E_{c_i}(x_s))$$
.

In the second case we construct the graph

$$(V(G), E(G) - E_{C_{i}}(x_s))$$
.

Let $G^{(1)}$ denote the graph obtained in either cases.

By P1, passing from G to $G^{(1)}$, the orders of the cliques distinct from C_{i_s} and the adjacency relation between the cliques are preserved, except for the pair (C, C_{i_s}) .

In case (i) $K(G) = K(G^{(1)})$. In case (ii) $K(G^{(1)})$ is the spanning subgraph of K(G) obtained by suppressing the edge $\{c_{i_s}, c\}$.

In either case γ is an *H*-chain of $K(G^{(1)})$, because the edge $\{c_{i_s}, c\}$ is not on γ .

If l=1, then the highest order of the cliques of $G^{(1)}$ is k-1 and by the induction hypothesis there exists an H-chain $\Gamma^{(1)}$ in $G^{(1)}$.

In case (i), let h' be an H-chain of the clique $C_{i_s} - (x_s)$, having end-vertices x', x''. Any H-chain of $G^{(1)}$ clearly has a sub-chain of the same type as h'. Therefore

$$\Gamma^{(1)} = \Gamma_1 h' \Gamma_2$$
,

 Γ_1 , Γ_2 being suitable chains of $G^{(1)}$.

Consider now the chain

$$\Gamma = \Gamma_1 h \Gamma_2$$
,

h being an H-chain of $C_{i_{\mathfrak{s}}}$, having end-vertices x', x''; Γ is evidently an H-chain of G.

In case (ii) the *H*-chain $\Gamma^{(1)}$ of $G^{(1)}$ is an *H*-chain of *G* too. Therefore, in both cases there is in *G* an *H*-chain.

If $l \ge 2$, let $G^{(0)} = G$, $G^{(1)}$, ..., $G^{(i)}$, be a finite sequence of graphs such that $G^{(i+1)}$ is obtained from $G^{(i)}$ by substituting a clique of order k with one of order k-1, with the same procedure we followed passing from G to $G^{(1)}$.

The highest order of the cliques of $G^{(0)}, \ldots, G^{(i-1)}$ is k, the highest order of the cliques of $G^{(i)}$ is k-1.

 γ is an *H*-chain of $K(G^{(i)})$, therefore $G^{(i)}$ has an *H*-chain $\Gamma^{(i)}$.

In order to find an H-chain of G, from $\Gamma^{(1)}$ we construct an H-chain of graph $G^{(l-1)}$ by the aforementioned procedure and by iterating l times an H-chain Γ of G from $\Gamma^{(1)}$. Q.E.D.

It is possible to show by the same method that if any two distinct cliques C_i , C_i of G satisfy the condition $|C_i \cap C_i| \leq 1$, if K(G) is triangle-less, and has an H-cycle, then G is an H-graph.

4. – In the hypotheses of the theorem, given an H-chain of K(G) we can provide an algorithm for finding an H-chain of G.

Let $\gamma = (c_1, ..., c_n)$ be an *H*-chain of K(G) and let x_i be the vertex common to the cliques C_i , C_{i+1} , i = 1, ..., n-1; let x be a vertex of C_i , distinct from x_i ; let x_i be a vertex of C_i , distinct from x_{n-1} . There are two cases to be considered:

(i) Every vertex of K(G) has degree ≤ 2 .

The vertices c_2, \ldots, c_{n-1} clearly have degree 2 and c_1 , c_n have degree 1; every clique C_i of G, $i=2,\ldots,n-1$, is adjacent to C_{i-1} , C_{i+1} ; $C_1(C_n)$ is adjacent to $C_2(C_{n-1})$. By P2 $x_{i-1} \neq x_i$, $i=1,\ldots,n$.

Therefore, if we call γ_i an H-chain of C_i , having end-vertices x_{i-1} , x_i , the chain $\Gamma = \gamma_1 \gamma_2 \dots \gamma_n$ is an H-chain of G.

(ii) There is a vertex of K(G) of degree $\geqslant 3$.

Let $c_{i_1}, \ldots, c_{i_r}, j_1 < \ldots < j_r, r \geqslant 1$, be the vertices of K(G) of degree $\geqslant 3$. Call $c_{11}, \ldots, c_{1q}, q_1 \geqslant 1$, the vertices of K(G) neighbours of c_{j_1} , but not γ -neighbours of c_{j_1} .

We set

122

$$\{x_{1t}\} = V(C_{t_t}) \cap V(C_{1t}), \qquad t = 1, ..., q_1.$$

Let G_1 be the graph $(V(G), E(G) - \bigcup_t E_{C_{1t}}(x_{1t}))$.

9

If $|C_{1t}| > 2$, for any $t = 1, ..., q_1$, it is easy to see that:

$$K(G_1) = V(K(G)), \qquad E(K(G)) - (\{c_{i_1}, c_{i_1}\}, \{c_{i_1}, c_{i_2}\}, ..., \{c_{i_r}, c_{i_q}\}).$$

Indeed, in the passage from G to G_1 the cliques $C_{11}, ..., C_{1q}$ turn, by P1, into cliques of order $|C_{1t}|-1\geqslant 2$, and the remaining cliques are preserved.

Therefore $V(K(G)) = V(K(G_1))$.

We now prove that

$$E(K(G_1)) = E(K(G)) - (\{c_{i_1}, c_{11}\}, ..., \{c_{i_r}, c_{1q}\}).$$

All the other cases being trivial, we just need to prove that all edges of E(K(G)) distinct from $\{c_i, c_{1t}\}$ and of the form $\{c_i, c_{1t}\}$ are in $E(K(G_1))$.

Indeed, if the edge $\{c_i, c_{1t}\}$ were not in $E(K(G_1))$, in K(G) there would be the triangle $(c_i, c_{1t}, c_{i,})$, contrary to the hypotheses.

From what we have just said γ is an *H*-chain of $K(G_1)$.

If there is one (and only one) clique C_{1t} of order 2, then $c_{1t} = c_n$.

Also in this case $K(G_1)$ has an H-chain: (c_1, \ldots, c_{n-1}) .

If in $K(G_1)$ there is no vertex of degree $\geqslant 3$, then $K(G_1)$, having an H-chain, is of type considered in case (i), and therefore, G_1 has an H-chain, which is evidently an H-chain of G.

Otherwise, calling c_{i_p} the first of vertices $c_{i_2}, ..., c_{i_p}$ having degree $\geqslant 3$, we construct the graph

$$G_2 = \left(V(G), E(G_1) - \bigcup_{\mathbf{a}} E_{c_{p\mathbf{a}}}(x_{p\mathbf{a}})\right),$$

where c_{pa} , $a=1,\ldots,q_p$, denotes a vertex of $K(G_1)$ neighbour of c_{i_p} but not γ -neighbour of c_{i_p} .

By this procedure, we end up by constructing a sequence $G_0 = G$, G_1 , G_2 , ... of graphs such that G_i is a spanning subgraph og G_{i-1} , $i \ge 1$, and every clique of graph $K(G_i)$ has an H-chain.

The procedure ends after at most r steps, with the construction of a graph G_h , such that every vertex of $K(G_h)$ has degree ≤ 2 .

By the result of case (i), G_h has an *H*-chain which is also an *H*-chain of G.

As a concluding remark, we notice that, by similar procedure, we can construct an H-cycle of G if γ is an H-cycle of K(G).

References.

[1] C. Berge, Graphes et hypergraphes, Dunod, Paris 1970.

- [2] S. T. Hedetniemi and P. J. Slater, Line graphs of triangleless graphs and iterated clique graphs, in «Graph theory and Applications», Proceedings of the Conference at Western Michigan University, May 10-13, 1972, ed. by Y. Alavi, et al., Springer-Verlag, New York 1972.
- [3] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. Providence, R.I. 38 (1962).
- [4] F. Speranza, On some Hamiltonian or Eulerian graphs, Atti Conv. Geom. Comb. Appl. Perugia 1971.
- [5] D. J. A. Welsh (ed), Combinatorial Mathematics and its Applications, A.P. London 1971.

Sommario.

Se due qualunque cliques di un grafo G finito semplice hanno al più un vertice in comune, se il clique-grafo di G è privo di triangoli e ha una catena hamiltoniana, allora G ha una catena hamiltoniana.

* * *