LINDA LESNIAK FOSTER (*)

Parameter-preserving groups of graphs. (**)

An automorphism of a graph G is a permutation α on V(G) such that for all vertices u and v of G, we have that $uv \in E(G)$ if and only if $\alpha u\alpha v \in E(G)$. The set of all automorphisms of G forms a group, denoted by $\Gamma(G)$ and referred to as the vertex-group of G. Clearly, if $\alpha \in \Gamma(G)$ and $v \in V(G)$, then $\deg(\alpha v) = \deg v$, i.e. automorphisms preserve degrees. If G is a connected graph, the eccentricity e(v) of a vertex v of G is the maximum distance from v among the vertices of G. It is a consequence of the definition of automorphism that if $\alpha \in \Gamma(G)$, then $e(\alpha v) = e(v)$, i.e. automorphisms preserve eccentricities. Suppose G is an r-regular graph, $v \in V(G)$, and v is incident with the edges e_1, e_2, \ldots, e_r of G. Denote by μ_{ij} , i < j, the length of a shortest cycle of G containing e_i and e_j , where we define $\mu_{ij} = 0$ if e_i and e_j do not lie on a cycle of G. If $\mu_1, \mu_2, \ldots, \mu_{\binom{r}{2}}$ are the numbers μ_{ij} in nondecreasing order, then the type $\mu(v)$ of the vertex v is the $\binom{r}{2}$ -tuple $(\mu_1, \mu_2, \ldots, \mu_{\binom{r}{2}})$. We observe that if $\alpha \in \Gamma(G)$, then $\mu(\alpha v) = \mu(v)$, i.e. automorphisms preserve types.

Let P be a function defined on the vertex set of a graph G. We will say that P is a $\Gamma(G)$ -preserved-function if for each $v \in V(G)$ and each $\alpha \in \Gamma(G)$, we have $P(\alpha v) = P(v)$. As noted above, the degree function is a $\Gamma(G)$ -preserved-function for every graph G and the eccentricity and type functions are $\Gamma(G)$ -preserved-functions for connected graphs G and regular graphs G, respectively. If G is an arbitrary graph and P is a $\Gamma(G)$ -preserved-function, we define the P-preserving-group $\Gamma_P(G)$ to be the group of all permutations of the vertices of G such that for each $v \in V(G)$ and for each $\alpha \in \Gamma_P(G)$, we have $P(\alpha v) = P(v)$. Then $\Gamma(G)$ is a subgroup of $\Gamma_P(G)$. In [1], Behzad determined neces-

^(*) Indirizzo: Department of Mathematics, Lousiane State University, Baton Rouge, Lousiana 70803, U.S.A.

^(**) AMS (MOS) subject classification (1970). Primary 05C25. Key words and phrases. Vertex-group, automorphism, eccentricity. - Ricevuto: 28-II-1974.

sary and sufficient conditions to have $\Gamma(G) \cong \Gamma_P(G)$ in the case $P(v) = \deg(v)$. The purpose of this paper is to extend Behzad's main results to a general $\Gamma(G)$ -preserved-function P defined on a graph G and then determine those connected graphs G for which $\Gamma(G) \cong \Gamma_P(G)$ in the case P(v) = e(v).

In order to present the following theorem, two definitions are necessary. The $neighborhood\ N_{\sigma}(v)$ of a vertex v of a graph G is the set of all vertices of G which are adjacent to v. We note that if v is an isolated vertex of G, then $N_{\sigma}(v) = \emptyset$. The $closed\ neighborhood\ \overline{\mathbb{N}}_{\sigma}(v)$ of v is $N_{\sigma}(v) \cup \{v\}$.

Theorem 1. Let P be a $\Gamma(G)$ -preserved-function defined on the vertex set of a graph G. Then $\Gamma(G) \cong \Gamma_P(G)$ if and only if

- (i) equi-P-valued vertices of G at least two of which are nonadjacent are all mutually nonadjacent and all have the same neighborhood, and
- (ii) equi-P-valued vertices of G at least two of which are adjacent are all mutually adjacent and all have the same closed neighborhood.

Proof. We first assume that $\Gamma(G) \cong \Gamma_P(G)$. Let w be an arbitrary vertex of G and let $S = \{v \in V(G) \mid P(v) = P(w)\}$. If |S| = 1, there is nothing to prove. So we assume |S| > 2. We first show that the elements of S are either mutually adjacent or mutually nonadjacent. Suppose, to the contrary, that there exist distinct vertices $u_1, u_2 \in S$ such that $u_1 u_2 \notin E(G)$ and distinct vertices $v_1, v_2 \in S$ such that $v_1 v_2 \in E(G)$. If $\{u_1, u_2\} \cap \{v_1, v_2\} = \emptyset$, then we define a permutation α on V(G) as follows:

$$egin{aligned} lpha u_1 = v_1 \ , & lpha v_1 = u_1 \ , \ \\ lpha u_2 = v_2 \ , & lpha v_2 = u_2 \ , \end{aligned}$$

and

$$\alpha w = w \qquad \text{ for all } \qquad w \in V(G) - \{u_1,\, u_2,\, v_1,\, v_2\} \;.$$

Then $\alpha \in \Gamma_P(G)$ and $\alpha \notin \Gamma(G)$, which presents a contradiction. If $\{u_1, u_2\} \cap \{v_1, v_2\} \neq \emptyset$, we may assume without loss of generality that $u_1 = v_1$ and $u_2 \neq v_2$. We define a permutation α on V(G) as follows:

$$\alpha u_2 = v_2$$
, $\alpha v_2 = u_2$

and

$$\alpha w = w \qquad \text{ for all } \qquad w \in V(G) - \{u_{\scriptscriptstyle 2}\,,\, v_{\scriptscriptstyle 2}\}\,.$$

Then $\alpha \in \Gamma_P(G)$ and $\alpha \notin \Gamma(G)$, which is a contradiction. Thus, if two elements of S are adjacent, then all elements of S are mutually adjacent and if two elements of S are nonadjacent, then all elements of S are mutually nonadjacent.

We now show that if the elements of S are mutually nonadjacent, then they have the same neighborhood. Assume, to the contrary, that S contains two elements, say u_1 and u_2 , such that $N_G(u_1) \neq N_G(u_2)$. We define the following permutation α on V(G):

$$\alpha(u_1) = u, \qquad \alpha(u_2) = u_1,$$

and

$$\alpha(w) = w$$
 for all $w \in V(G) - \{u_1, u_2\}$.

Then $\alpha \in \Gamma_P(G)$ and $\alpha \notin \Gamma(G)$, which is a contradiction. The same argument shows that if the elements of S are mutually adjacent, then they have the same closed neighborhood.

In order to prove the converse, it suffices to show that if (i) and (ii) are satisfied, then $\Gamma_P(G)$ is a subgroup of $\Gamma(G)$. If $E(G) = \emptyset$, then $\Gamma_P(G)$ is clearly a subgroup of $\Gamma(G)$. So we may assume that $E(G) \neq \emptyset$. We first show that if $\alpha \in \Gamma_P(G)$ and $uv \in E(G)$, then $\alpha u\alpha v \in E(G)$. If $\alpha u = u$ and $\alpha v = v$, then $\alpha u\alpha v \in E(G)$. So we assume that $\alpha u \neq u$ or $\alpha v \neq v$.

Case 1. Suppose P(u) = P(v). Since $\alpha \in \Gamma_P(G)$, we have $P(\alpha u) = P(u) = P(v) = P(\alpha v)$. Since $\alpha u \neq \alpha v$ and $uv \in E(G)$, condition (ii) implies that $\alpha u\alpha v \in E(G)$.

Case 2. Suppose $P(u) \neq P(v)$ and $\alpha u = u$ or $\alpha v = v$, say the former. Then $\alpha v \neq v$ and since $\alpha \in \Gamma_P(G)$, we have $P(\alpha v) = P(v)$. Since $\alpha u \in N_G(v)$, conditions (i) and (ii) imply that $\alpha u \in \overline{N}_G(\alpha v)$. However, $\alpha u \neq \alpha v$ so that $\alpha u \in N_G(\alpha v)$, i.e. $\alpha u \alpha v \in E(G)$.

Case 3. Suppose $P(u) \neq P(v)$, $\alpha u \neq u$, and $\alpha v \neq v$. Since $\alpha \in \Gamma_P(G)$, we have $P(\alpha u) = P(u)$ and $P(\alpha v) = P(v)$. Since $v \in N_G(u)$, conditions (i) and (ii) imply that $v \in \overline{N}_G(\alpha u)$. However, since $P(\alpha u) = P(u)$ and $P(v) \neq P(u)$, we have that $v \neq \alpha u$. Thus $v \in N_G(\alpha u)$ so that $\alpha u \in N_G(v)$. By conditions (i) and (ii), we have $\alpha u \in \overline{N}_G(\alpha v)$. Since $\alpha u \neq \alpha v$, we conclude that $\alpha u \in N_G(\alpha v)$, i.e. $\alpha u \alpha v \in E(G)$.

Corollary 1. Let P be a $\Gamma(G)$ -preserved-function defined on the vertex set of a disconnected graph G. Then $\Gamma(G) \cong \Gamma_{\mathbb{P}}(G)$ if and only if

- (i) no two components of G, at least one of which is nontrivial, contain equi-P-valued vertices, and
- (ii) for every component H of G, we have $\Gamma(H) \cong \Gamma_{P|V(H)}(H)$.

Corollary 2. Let P be a $\Gamma(G)$ -preserved-function defined on the vertex set of a graph G, where P(u) = P(v) for all $u, v \in V(G)$. Then $\Gamma(G) \cong \Gamma_P(G)$ if and only if G is isomorphic to a complete graph or the complement of a complete graph.

Corollary 3. Let P be a $\Gamma(G)$ -preserved-function defined on a graph G with a cutvertex v. If $\Gamma(G) \cong \Gamma_P(G)$, then there exists no vertex $w \neq v$ such that P(w) = P(v).

Proof. Assume, to the contrary, that G contains a vertex $w \neq v$ such that P(w) = P(v). Let u and u' be two vertices of G adjacent to v which lie in different components of G-v. If $w \in \{u, u'\}$, say w = u, then $uu' \in E(G)$, contradicting the fact that u and u' lie in different components of G-v. Hence we must have that $w \notin \{u, u'\}$. But then w is adjacent to both u and u', again contradicting the fact that u and u' lie in different components of G-v.

For an arbitrary graph G, the determination of $\Gamma(G)$ is, in general, a tedious procedure. If, however, there exists a $\Gamma(G)$ -preserved-function P defined on the vertex set of G such that $\Gamma(G) \cong \Gamma_P(G)$, then $\Gamma(G)$ can easily be produced. Let $V_1, V_2, ..., V_k$ be the partition of V(G) defined by: $v, w \in V$, $(1 \le j \le k)$ if and only if P(v) = P(w). Then it is easily verified that $\Gamma_P(G) \cong S_{|P_1|} \times S_{|P_2|} \times ... \times S_{|P_k|}$, where S_n denotes the symmetric group on n objects.

We now restrict our attention to connected graphs G and the $\Gamma(G)$ -preserved-function P defined by P(v) = e(v). Some preliminary definitions are needed in order to present a characterization of those connected graphs G for which $\Gamma(G) \cong \Gamma_e(G)$. We define K_p to be the graph of order p in which every pair of vertices is adjacent and \overline{K}_p to be the graph of order p with no edges. Let G_1 and G_2 be graphs with $V(G_1) \cap V(G_2) = \emptyset$. Then $G_1 + G_2$ is defined to be that graph whose vertex set is $V(G_1) \cup V(G_2)$ and whose edge set is $E(G_1) \cup E(G_2) \cup \{v_1v_2 | v_i \in V(G_i), i = 1, 2\}$.

Theorem 2. Let G be a connected graph of order p. Then $\Gamma(G) \cong \Gamma_e(G)$ if and only if G is isomorphic to K_n or G is isomorphic to $K_m + \overline{K}_n$, for some m and n satisfying m + n = p and $n \geqslant 2$.

Proof. By Theorem 1, if G is isomorphic to K_r or G is isomorphic to $K_m + \overline{K}_n$, then $\Gamma(G) \cong \Gamma_e(G)$.

In order to verify the converse, we let G be a connected graph of order p such that $\Gamma(G) \cong \Gamma_e(G)$. We first observe that diam $G \leqslant 2$; for otherwise, there exists a longest distance path $P: u_0, u_1, ..., u_k$, where $k = \text{diam } G \geqslant 3$. Then $e(u_0) = k = e(u_k)$. Since $k \geqslant 3$, neither $u_0 u_{k-1}$ nor $u_0 u_k$ are edges of G. Thus by Theorem 1, $\Gamma(G) \neq \Gamma_e(G)$, which presents a contradiction so that diam $G \leqslant 2$.

If diam G=0 or diam G=1, then G is isomorphic to K_p . So we may assume that diam G=2. Let $S=\{v\in V(G)\,|\, e(v)=1\}$ and let $T=\{v\in V(G)\,|\, e(v)=2\}$. The set T is not empty since diam G=2. Moreover, $S\neq\emptyset$; for otherwise, every vertex of G has eccentricity 2 in G. By Theorem 1, the vertices of G are mutually adjacent, implying that diam G=1 which is a contradiction. Let m=|S| and n=|T| For $v\in S$ and $w\in V(G)-\{v\}$, we have that $vw\in E(G)$ since e(v)=1. Let $z\in T$. Since e(z)=2, there exists a vertex z' (necessarily in T) such that z and z' are nonadjacent. Thus by Theorem 1, the vertices of T are mutually nonadjacent. Hence G is isomorphic to $K_m+\overline{K}_n$, where m+n=p and $n\geqslant 2$.

Reference.

[1] M. Behzad, The degree preserving group of a graph, Riv. Mat. Univ. Parma (2) 11 (1970), 307-311.

Abstract.

For a graph G, $\Gamma(G)$ is the group of all automorphisms of G. A function P (on V(G)) is a $\Gamma(G)$ -preserved-function if $P(\alpha v) = P(v)$ for each $v \in V(G)$ and $\alpha \in \Gamma(G)$. For such a function, $\Gamma_{\mathbf{p}}(G)$ is the group of all permutations of V(G) such that $P(\alpha v) = P(v)$ for each $v \in V(G)$ and $\alpha \in \Gamma_{\mathbf{p}}(G)$. Necessary and sufficient conditions are established in order to have $\Gamma(G) \cong \Gamma_{\mathbf{p}}(G)$, and a specialized result is given for one particular function P.

* * *