R. S. PATHAK (*)

Stieltjes transformable generalized functions. (**)

1. - Introduction.

In a recent paper Pandey [1] has given a generalization of classical STIEL-TJES transform to certain classes of generalized functions. He introduced the space $S'_{\alpha}(I)$ of generalized functions, where α is a fixed real (arbitrary) constant less than or equal to 1, and showed that the real and complex inversion formulae of WIDDER ([3], pp. 125, 144) for STIELTJES transforms are still valid when the limiting operation in those formulae is understood as weak convergence in the space \mathscr{D}' of SCHWARTZ distributions. The testing function space which was dealt within [1] was defined over \mathscr{R}^1_+ . In this Note we shall deal with an S_{α} -space defined over \mathscr{R}^n_+ , the n-dimensional euclidean space of non-negative real numbers, and α will be fixed arbitrary element of \mathscr{R}^1 . Our object is to find a representation formula for a certain subspace of $S'_{\alpha}(\mathscr{R}^n_+)$.

The notation and terminology will follow that of [1] and [4]. Unless otherwise stated x will be understood to be a variable in \mathcal{R}_+^n and α will signify a constant in \mathcal{R}^1 . If a and b are in \mathcal{R}_+^n , by a > b we mean that $a_i > b_i$ for i = 1, 2, 3, ..., n, where a_i and b_i are components of a and b respectively. When c and x both belong to \mathcal{R}_+^n the expression cx is understood to be scalar product of c and x.

2. - The testing function space $S_{\alpha}(\mathscr{Q}^n_+)$.

Let \mathcal{R}_+^n stand for the *n*-dimensional euclidean space of non-negative real numbers, and let $x = \{x_1, x_2, ..., x_n\} \in \mathcal{R}_+^n$. We introduce the following nota-

^(*) Indirizzo: Department of Mathematics, Banaras Hindu University, Varanasi-5, India.

^(**) Ricevuto: 3-IX-1973.

tions:

$$|x| \stackrel{\Delta}{=} x_1 + x_2 + \dots + x_n , \qquad x^i \stackrel{\Delta}{=} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} ,$$

$$\left(\frac{\partial}{\partial x}\right)^i \stackrel{\Delta}{=} \left(\frac{\partial}{\partial x_1}\right)^{i_1} \left(\frac{\partial}{\partial x_2}\right)^{i_2} \dots \left(\frac{\partial}{\partial x_n}\right)^{i_n} ,$$

$$\mathcal{D}^k \varphi = \left(x \frac{\partial}{\partial x}\right)^k \varphi \stackrel{\Delta}{=} \left(x_1 \frac{\partial}{\partial x_1}\right)^{k_1} \left(x_2 \frac{\partial}{\partial x_2}\right)^{k_2} \dots \left(x_n \frac{\partial}{\partial x_n}\right)^{k_n} \varphi(x_1, x_2, \dots, x_n) ,$$

where $k = (k_1, k_2, ..., k_n)$ and the k_i are non-negative integers. The order of the differentiation operator \mathcal{D}^k will be defined as the number

$$|k| = k_1 + k_2 + ... + k_n$$
.

A complex valued and infinitely differentiable function $\varphi(x)$ defined over \mathscr{R}^n_+ is said to belong to the space $S_{\alpha}(\mathscr{R}^n_+)$ if

$$\gamma_k(\varphi) = \max_{|\mathbf{k}| \leqslant m} \sup_{\mathbf{x} \in \mathscr{R}^n_+} (1 + |\mathbf{x}|)^{\alpha} \left| \left(x \frac{\partial}{\partial x} \right)^k \varphi(\mathbf{x}) \right| < \infty,$$

for m=0,1,2,... and for a fixed real number $\alpha\in\mathcal{R}^1$ less than or equal to 1. Clearly $S_{\alpha}(\mathcal{R}^n_+)$ is a vector space. The space $\mathcal{D}(\mathcal{R}^n_+)$ is a subspace of $S_{\alpha}(\mathcal{R}^n_+)$ and the topology of $\mathcal{D}(\mathcal{R}^n_+)$ is stronger than the topology induced on $\mathcal{D}(\mathcal{R}^n_+)$ by $S_{\alpha}(\mathcal{R}^n_+)$ and as such restriction of any member of $S'_{\alpha}(\mathcal{R}^n_+)$ to $\mathcal{D}(\mathcal{R}^n_+)$ is in $\mathcal{D}'(\mathcal{R}^n_+)$. In case n=1, we write $\mathcal{R}^1_+=I=(0,\infty)$ and $S_{\alpha}(\mathcal{R}^1_+)$ becomes PANDEY's $S_{\alpha}(I)$ space.

The convergence in $S_{\alpha}(\mathcal{R}^n_+)$.

A sequence $\{\varphi_r(x)\}_{r=1}^{\infty}$, where $\varphi_r(x)$ is in $S_{\alpha}(\mathcal{R}_+^n)$ for each r, is said to converge to $\varphi(x)$ in $S_{\alpha}(\mathcal{R}_+^n)$ if $\gamma_k(\varphi_r-\varphi)\to 0$ as $r\to\infty$ for each $k=0,1,2,\ldots$. We further add that a sequence $\{\varphi_r(x)\}_{r=1}^{\infty}$ where each $\varphi_r(x)\in S_{\alpha}(\mathcal{R}_+^n)$, is a Cauchy sequence in $S_{\alpha}(\mathcal{R}_+^n)$ if $\gamma_k(\varphi_r-\varphi_\mu)\to 0$ as μ and r both go to infinity, independently of each other, for $k=0,1,2,\ldots$. It has been proved by Pandey [1] that for $n=1,S_{\alpha}(\mathcal{R}_+^n)$ is a locally convex Hausdorff topological vector space. It can similarly be proved that the result is also true for $S_{\alpha}(\mathcal{R}_+^n)$ for n>1.

The dual space $S'_{\alpha}(\mathcal{R}^n_+)$ contains all distributions of compact support in \mathcal{R}^n_+ ;

3. - Representation.

Now we shall prove a representation theorem for Stieltjes transformable generalized functions. Our proof is analogous to the method employed in structure theorem for Schwartz distributions ([2], pp. 272-274).

Theorem. Let f be an arbitrary element of $S_{\alpha}(\mathcal{R}_{+}^{n})$ and φ be an element of $\mathcal{D}(\mathcal{R}_{+}^{n})$, the space of infinitely differentiable functions with compact support in \mathcal{R}_{+}^{n} . Then, there exist N continuous functions $h_{i}(x)$ defined over \mathcal{R}_{+}^{n} such that

$$(2) \hspace{1cm} \langle f, \varphi \rangle = \langle \sum_{|i| \leqslant r+n} (-1)^{|i|} (\partial/\partial x)^{i} [(1+|x|)^{\alpha-n} x^{i-1} P_{i}(x) \rhd h_{i}], \, \varphi(x) \rangle \, .$$

Here $\alpha \in \mathcal{R}^1$ is a fixed real number always less than or equal to 1, N is the number of n-tuples i satisfying $|i| \leq n + r$, r is an appropriate non-negative integer and \triangleright is the differentiation monomial $\partial/\partial x_1$, $\partial/\partial x_2$, ..., $\partial/\partial x_n$ and $P_i(x)$ are polynomial of degree n+1.

Proof. Let $\{\gamma_k\}_{k=0}^{\infty}$ be the sequence of seminorms as defined in section 3 and let f and φ be arbitrary elements of $S'_{\alpha}(\mathcal{R}_{+}^{n})$ and $\mathcal{D}(\mathcal{R}_{+}^{n})$ respectively. Then by the boundedness property of generalized functions, we have for an appropriate constant C and a non-negative integer r,

$$\begin{cases}
\langle f, \varphi \rangle \leqslant C \max_{|k| \leqslant r} \gamma_{k}(\varphi), \\
\leqslant C \max_{|k| \leqslant r} \sup_{x \in \mathcal{R}^{n}_{+}} (1 + |x|)^{\alpha} \left| \left(x \frac{\partial}{\partial x} \right)^{k} \varphi(x) \right|, \\
\leqslant C \max_{|k| \leqslant r} \sup_{x} (1 + |x|)^{\alpha} \prod_{j=1}^{n} \left| \sum_{i_{j}=0}^{k_{j}} (a_{i})_{i_{j}} (x_{j})^{i_{j}} \left(\frac{\partial}{\partial x_{j}} \right)^{i_{j}} \varphi \right|, \\
\leqslant C \max_{|k| \leqslant r} \sup_{x} (1 + |x|)^{\alpha} \prod_{j=1}^{n} k_{j} \max_{0 \leqslant i_{j} \leqslant k_{j}} (x_{j})^{i_{j}} \left(\frac{\partial}{\partial x_{j}} \right)^{j} \varphi,
\end{cases}$$

where

$$C' = C \prod_{j=1}^{n} \max_{0 \leq i, \leq k_{s}} |(a_{j})_{i_{j}}|.$$

So that

(4)
$$\langle f, \varphi \rangle \leqslant C'' \max_{|i| \leqslant r} \sup_{x} (1 + |x|)^{\alpha} x^{i} \left| \left(\frac{\partial}{\partial x} \right)^{i} \varphi \right|$$

where $C'' = C' \prod_{j=1}^{n} k_{j}$.

7

For any $\Psi \in \mathcal{D}(\mathcal{R}^n_{\perp})$ we can write

(5)
$$\sup_{x} |\mathcal{Y}(x)| \leq \sup_{x} |\int_{x_{1}}^{\infty} \dots \int_{x_{n}}^{\infty} \triangleright \psi(x) dx_{1} \dots dx_{n}| \leq ||\triangleright \psi||_{L^{1}},$$

where \triangleright is the differentiation monomial $\partial/\partial x_1$, $\partial/\partial x_2$, ..., $\partial/\partial x_n$. Therefore from (4), we have

(6)
$$\begin{cases} |\langle f, \varphi \rangle| \leqslant C'' \max_{|i| \leqslant r} \left\| \triangleright (1 + |x|)^{\alpha} x^{i} \left(\frac{\partial}{\partial x}\right)^{i} \varphi(x) \right\|_{L'}, \\ \leqslant C'' \max_{|i| \leqslant r+n} \left\| (1 + |x|)^{\alpha-n} x^{i-1} P_{i}(x) \left(\frac{\partial}{\partial x}\right)^{i} \varphi(x) \right\|_{L'}, \end{cases}$$

where $P_i(x)$ are polynomials of degree n+1.

Let the number of *n*-tuples *i* satisfying $|i| < \gamma + n$ be denoted by N and the product space $L' \times \stackrel{N}{\dots} \times L'$ by $(L')^N$. We consider the linear one-to-one mapping

(7)
$$\tau \colon \varphi \to \left\{ \left(1 + |x| \right)^{\alpha - n} x^{i - 1} P_i(x) \left(\frac{\partial}{\partial x} \right)^i \varphi(x) \right\}_{|i| \leqslant \mathbf{r} + n}$$

of $\mathscr{D}(\mathscr{R}_+^n)$ into $(L')^N$. In view of (6) we see that the linear functional $\tau \varphi_r \to \langle f, \varphi \rangle$ is continuous on $\tau \mathscr{D}(\mathscr{R}_+^n)$ for the topology induced by $(L')^N$. Hence by Hahn-Banach theorem, it can be extended as a continuous linear functional in the whole of $(L')^N$. But the dual of $(L')^N$ is isomorphic with $(L^\infty)^N$ ([2], pp. 214, 259), therefore there exist NL^∞ functions g_i (|i| < r + n) such that $\langle f, \varphi \rangle = \sum_{|i| \le r + n} \langle g_i(1 + |x|)^{\alpha - n} x^{i-1} P_i(x) (\partial/\partial x)^i \varphi(x) \rangle$.

So that
$$\langle f, \varphi \rangle = \sum_{|i| \leqslant r+n} \langle (-1)^{|i|} (\partial/\partial x)^i [(1+|x|)^{\alpha-n} x^{i-1} P_i(x) g_i], \varphi(x) \rangle$$
.

Therefore
$$f = \sum_{|i| \le r+n} \langle (-1)^{|i|} (\partial/\partial x)^i [(1+|x|)^{\alpha-n} x^{i-1} P_i(x) g_i], \varphi(x) \rangle$$
.

For each
$$i$$
 we set $h_i(x) = \int_0^{x_1} \dots \int_0^{x_n} g_i(y_1, \dots, y_n) dy_1 \dots dy_n$.

Since g_i is in L^{∞} , we see that h_i is continuous in \mathscr{R}^n_+ and that $|h_i(x)| \leq |x_1| \dots |x_n| \|g_i\|_L^{\infty}$.

Furthermore, we have $g_i = \triangleright h_i$ and consequently

(8)
$$f = \sum_{|i| \leq r+n} (-1)^{|i|} \left(\frac{\partial}{\partial x}\right)^i \left[\left(1+|x|\right)^{\alpha-n} x^{i-1} P_i(x) \rhd h_i \right].$$

This completes the proof.

Taking n=1 in (2) we obtain structure formula for elements of Pandey's space $S'_{\alpha}(I)$ in the form

$$\langle f, \varphi \rangle = \langle \sum\limits_{i=0}^{r+1} (-1)^i \left(\frac{\partial}{\partial x} \right)^i \left[(1+x)^{\alpha-1} \, x^{i-1} \, P_i(x) \, \frac{\partial}{\partial x} \, h_i \, \right] \, \varphi(x) \rangle$$

where $h_i(x)$ are continuous functions defined over $\mathcal{R}^n_+ = (0, \infty)$.

We shall now define the testing function spaces $\mathscr{S}_{c,d}$ and $\mathscr{S}_{c,d}$, and state some properties of these spaces which can be established by the standard techniques followed by Pandey [1].

The testing function space $\mathcal{S}_{c,d}$.

Let $c, d \in \mathcal{R}'$ and $s \in \mathcal{C}'$. Let $\xi_{c,d}(x)$ be the function

(9)
$$\xi_{\mathfrak{o},d}(x) = \begin{cases} x^{\mathfrak{o}} & 0 < x < 1, \\ x^{\mathfrak{d}} & 1 \leq x < \infty. \end{cases}$$

 $\mathscr{S}_{c,d}$ denotes the space of all complex-valued functions $\varphi(x)$ on $I=(0< x<\infty)$ on which the functionals β_k defined by

(10)
$$\beta_{k}(\varphi) \stackrel{\Delta}{=} \beta_{k,c,d}(\varphi) \stackrel{\Delta}{=} \left| \xi_{c,d}(x) \left(x \frac{\partial}{\partial x} \right)^{k} \varphi(x) \right|, \qquad k = 0, 1, 2, \dots,$$

assume finite values. The countable set of seminorms $\{\beta_k\}_{k=0}^{\infty}$ generates the topology for $\mathscr{S}_{c,d}$. It can be shown that $\mathscr{S}_{c,d}$ is Hausdorff, locally convex, first countable, complete, countably normed space. The space $\mathscr{D}(I)$ is a subspace of $\mathscr{S}_{c,d}$ and the topology of $\mathscr{D}(I)$ is stronger than the topology induced on $\mathscr{D}(I)$ by $\mathscr{S}_{c,d}$ and as such the restriction of any member of $\mathscr{S}'_{c,d}$ (the dual space of $\mathscr{S}_{c,d}$) to $\mathscr{D}(I)$ is in $\mathscr{D}'(I)$. We say that a sequence $\{\varphi_v(x)\}_{v=1}^{\infty}$ where each $\varphi_v(x)$ belongs to $\mathscr{S}_{c,d}$, is a Cauchy sequence in $\mathscr{S}_{c,d}$ if $\beta_k(\varphi_\mu - \varphi_v)$ tends to zero for any non-negative integer k as μ and ν both tend to infinity independently of each other. It can be readily seen that $\mathscr{S}_{c,d}$ is sequentially complete.

For complex s not lying on the negative real axis and $k=1,\,2,\,3,\,\ldots,\,1/(s+x)^k\in\mathcal{S}_{c,d}$.

The testing function space $\mathcal{L}_{c,d}$.

An infinitely differentiable complex valued function $\varphi(x)$ defined over I is said to belong to ${}_{c}\mathscr{S}_{d}$ if

(11)
$$\tau_{k}(\varphi) \stackrel{\Delta}{=} \tau_{k,c,d}(\varphi) \stackrel{\Delta}{=} \left| \xi_{c,d}(x) \, x^{k} \, \left(\frac{\partial}{\partial x} \right)^{k} \varphi(x) \right| < \infty$$

for all k=0,1,2,..., where $\xi_{c,d}(x)$ is the same as defined in (9). The concept of convergence and completeness in $\mathscr{L}_{c,d}$ is defined in a way similar to those defined in $\mathscr{L}_{c,d}$. The space $\mathscr{L}_{c,d}$ is also a locally convex Hausdorff topological vector space. The restriction of any member of $\mathscr{L}'_{c,d}$ (the dual space of $\mathscr{L}_{c,d}$) to $\mathscr{D}(I)$ is in $\mathscr{D}'(I)$.

Following results can be established by following the technique of PANDEY ([1], Lemma 1).

- (i) The spaces $\mathscr{S}_{c,d}$ and $\mathscr{S}_{c,d}$, for fixed real numbers c>0 and $d\leqslant 1$, are equal in store of elements.
- (ii) T_1 the topology generated in $\mathscr{S}_{c,d}$ by the sequence of seminorms $\{\beta_k\}_{k=1}^{\infty}$ is the same as T_2 , the topology generated on $\mathscr{S}_{c,d}$ by the sequence of seminorms $\{\tau_k\}_{k=1}^{\infty}$.

4. - The Stieltjes transform on $\mathscr{S}'_{c,d}$.

The STIELTJES transform F(s) of an arbitrary element f(x) of $\mathscr{S}'_{c,d}$ is defined by

(12)
$$\mathscr{S}[f] \stackrel{\Delta}{=} F(s) \stackrel{\Delta}{=} \langle f(x), \frac{1}{s+x} \rangle ,$$

for all s lying in the compact set Ω_{f} of the complex plane not meeting the negative real axis.

Now we are stating some theorems whose proofs are similar to those of Pandey [1] and hence are omitted.

Theorem 2. (The analiticity theorem). Let F(s) be the Stieltjes transform of $f(x) \in \mathcal{S}'_{\sigma,d}$ as defined in (12). Then, F(s) is analytic on Ω_f and for k = 1, 2, 3, ...,

(13)
$$F^{(k)}(s) = \langle f(x), \frac{(-1)^k k!}{(s+x)^{k+1}} \rangle .$$

Moreover, for positive real x,

$$(14) \qquad F^{(k)}(x) = \begin{cases} 0(x^{-k}) & \text{as } x \to \infty & \text{if } c \geqslant 0 \quad \text{and} \quad d \leqslant 1 \text{ ,} \\ 0(x^{-k}) & \text{as } x \to \infty & \text{if } c \geqslant 0 \quad \text{and} \quad d = 1 \text{ ,} \\ 0(x^{-k-1}) & \text{as } x \to 0 + \text{ if } c = 0 \quad \text{and} \quad d \leqslant 1 \text{ ,} \\ 0(x^{-k-1}) & \text{as } x \to 0 + \text{ if } c > 0 \quad \text{and} \quad d \leqslant 1 \text{ .} \end{cases}$$

The last order relation could not be obtained in the Pandey's space $S_{\alpha}'(I)$.

Theorem 3. (The real inversion formula). For fixed c > 0, $d \le 1$ and x > 0 let F(x) be the Stieltjes transform of f(x) belonging to $\mathcal{S}'_{c,d}$ defined by (12). Then for an arbitrary element $\varphi(x)$ of $\mathscr{D}(I)$ we have

(15)
$$\langle L_{kx}F(x), \varphi(x)\rangle \rightarrow \langle f, \varphi\rangle \quad as \quad k \rightarrow \infty$$

where

(16)
$$L_{k,x}[\psi(x)] = \frac{(-x)^{k-1}}{k!(k-2)!} \frac{\partial^{2k-1}}{\partial x^{2k-1}} [x^k \psi(x)],$$

where $\psi(x)$ is an element of $\mathscr{S}'_{c,d}(I)$ and the differentiation in (16) is supposed to be in the distributional sense.

Theorem 4. (The complex inversion formula). Let f(t) be an arbitrary element of $\mathscr{S}'_{e,d}$ and F(s) be the Stieltjes transform of f(t). Then for an arbitrary element $\varphi(x) \in \mathscr{D}(I)$ we have

$$\langle \, \frac{F(-\,\xi-i\eta)-F(-\,\xi+i\eta)}{2\pi i} \,\,, \quad \varphi(\xi) \rangle \to \langle f,\varphi \rangle \qquad \text{as } \eta \to 0\,+\,\,,$$

where $c \ge 0$ and $d \le 1$.

Theorem 5. (The uniqueness theorem). If $\mathcal{S}[f] = F(s)$ for $s \in \Omega_f$ and $\mathcal{S}[h] = H(s)$ for $\mathcal{S} \in \Omega_h$, if $\Omega_f \cap \Omega_h$ is not empty, and if F(s) = H(s) for $\mathcal{S} \in \Omega_f \cap \Omega_h$, then f = h in the sense of equality in $\mathcal{D}'(I)$.

Theorem 6. (The representation theorem). Let f be an arbitrary element of $\mathscr{S}'_{e,d}$ and φ be an element of $\mathscr{D}(I)$. Then, there exist continuous functions $h_i(x)$ defined over I such that

$$\langle f,\varphi\rangle = \langle \sum_{i=0}^{r+1} (-1)^i \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^i \left[\xi_{\mathrm{c},\mathrm{d}}(x) \, x^{i-1} \frac{\partial h_i}{\partial x}\right], \; \varphi(x) \rangle$$

where c>0, d<1 and r is an appropriate non-negative integer. The proof is similar the that of Theorem 1.

Theorem 7. For fixed $c \ge 0$ and $d \le 1$, let $f(t) \in \mathcal{S}'_{c,d}$ and define

$$F(x) \stackrel{\Delta}{=} \langle f(t), \frac{t}{x^2 + t^2} \rangle$$
.

Then, for $\varphi(x) \in \mathcal{D}(I)$,

$$\langle L_{n,x}F(x), \varphi(x)\rangle \rightarrow \langle f, \varphi\rangle$$
 as $n \rightarrow \infty$,

where the operator $L_{n,x}$ is defined by

$$L_{n,x} = -\theta \prod_{k=1}^{n} \left(1 - \frac{\theta^{2k}}{4k^2}\right) , \qquad \theta \equiv x \frac{\partial}{\partial x} .$$

The author expresses his gratitude to Dr. J. N. Pandey of Carleton University for his valuable suggestions.

References.

- [1] J. N. Pandey, On the Stieltjes transform of generalized functions, Proc. Cambridge Philos. Soc. 71 (1972), 85-96.
- [2] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York 1967.
- [3] D. V. Widder, An introduction to transform theory, Academic Press, New York 1971.
- [4] A. H. Zemanian, Generalized integral transformations, Interscience Publishers, New York 1968.

Abstract.

An infinitely differentiable and complex valued function $\varphi(x)$ defined over $I=(0,\infty)$ belongs to Pandey's space $S_{\alpha}(I)$ if

$$\gamma_k|(arphi) = \sup_{\mathbf{0} < x < \infty} (1+x)^lpha \left| \left(x rac{\partial}{\partial x}
ight)^k arphi(x)
ight| < \infty$$
 ,

for any fixed k where k assumes values 0, 1, 2, ... and α is a fixed real number less than or equal to 1. The topology on $S_{\alpha}(I)$ is generated by the sequence of seminorms $\{\gamma_k\}_{k=0}^{\infty}$. Pandey extended real and complex inversion formulae of Stieltjes transforms due to Widder to $S_{\alpha}(I)$ -space, but did not give a structure formula.

In this paper an extension of $S_{\alpha}(I)$ -space and its dual to n-dimensions is given and a structure formula obtained which shows that every element of the dual space of $S_{\alpha}(I)$ is the linear combination of the finite order distributional derivative of certain continuous functions. The inversion formulae of Widder are also extended to another space of generalized functions.