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Stieltjes transformable generalized functions. (**)

1. - Introduction.

In a recent paper PANDEY [1] has given a generalization of classical STIEL-
TJES transform to certain classes of generalized functions. He introduced the
space S;(I ) of generalized functions, where « is a fixed real (arbitrary) con-
stant less than or equal to 1, and showed that the real and complex inversion
formulae of WiDDER ([3], pp. 125, 144) for STIELTIES transforms are still valid
when the limiting operation in those formulae is understood as weak con-
vergence in the space 9’ of ScEWARTZ distributions. The testing function
space which was dealt within [1] was defined over #%. In this Note we shall
deal with an §,-space defined over %}, the n-dimensional euclidean space
of non-negative real numbers, and « will be fixed arbitrary element of %,
Our object is to find a representation formula for a certain subspace of S;(.%i).

The notation and terminology will follow that of [1] and [4]. Unless other-
wise stated x will be understood to be a variable in Z,. and o will signify a
constant in #*. If ¢ and b are in Z%, by a>b we mean that a;> b, for
1=1,2,38,..,n, where «, and b, are components of ¢ and b respectively.
When ¢ and # both belong to £ the expression cz is understood to be scalar
product of ¢ and z.

2. - The testing function space S.(%z) .

Let Z stand for the n-dimensional euclidean space of non-negative real
numbers, and let = {x,, @,, ..., @,y €R,. We introduce the following nota-
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tions:
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where k= (ky, ks, ..., k,) and the k, are non-negative integers. The order of
the differentiation operator Z* will be defined as the number

|B]=ky-+ ket oo 4 En

A complex valued and infinitely differentiable function ¢(#) defined over 7z
is said to belong to the space S (#7) if
o \*
(w 595) P(@)

for m =0, 1,2, ... and for a fixed real number « ¢ #* less than or equal to 1.
Clearly 8,(#}) is a vector space. The space D(X}) is a subspace of S, (%}
and the topology of Z(%%) is stronger than the topology induced on Z(Z)
by S,(Z#%) and as such restriction of any member of SL(#%) to D(AL) is in
2'(#r). In case m=1, we write %} =1I=(0,0) and S, (#}) becomes
PaxpEY’s S,(I) space.

< 00,

1) yi(p) = max sup (14 |z])"

k|<m ace.%_';_

The convergence in S, (Z%).

A sequence {g,(w)}>.,, where p.(x) is in S,(%}) for each », is said to con-
verge to g(x) in S,(Z}) if pilp»—@)—0 as y—>oo for each F=0,1,2,...
We further add that a sequence {@,(x)}2, where each @u(x)€ S8,(Z}), is @
CAUCHY sequence in S,(#%) if yu(pv—@u) —0 as p and v both go to infinity,
independently of each other, for k =0, 1, 2, .... It has been proved by PANDEY
[1] that for n = 1, S,(#}) is a locally convex HAUSDORFF topological vector
space. It can similarly be proved that the result is also true for S, (#;) for
7> 1. '

The dual space S;(%’i) contains all distributions of compact support in 7% ;
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3. - Representation.

Now we shall prove a representation theorem for STTELTIES transformable
generalized funetions. Our proof is analogous to the method employed in
structure theorem for Scawartz distributions (2], pp. 272-274).

Theorem. Let f be an arbitrary element of S;(,%Z) and @ be an element
of (&), the space of infinitely differentiable functions with compact support
in Xy. Then, there exist N continuous functions h,(x) defined over X% such that

2) <y o> =1<; > (=DM @fea) [(1+ 2] ) "0 Pa) 1], p()) .

H<r+n

Here o€ #* is a fixed real number always less than or equal to 1, N is the
number of n-tuples i satisfying [i|<n -, » is an appropriate non-negative
integer and o is the differentiation monomial 8/éw,, 00w, ..., 3/ow, and P, (z)
are polynomial of degree = - 1.

Proof. Let {y,}r, be the sequence of seminorms as defined in section 3
and let f and ¢ be arbitrary elements of S;(%’;) and D(Z7) respectively. Then
by the boundedness property of generalized functions, we have for an appro-

priate constant ¢ and a non-negative integer r,

[ <, P> < Cmaxyp),
JEj<r
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where C" = C'[]%,.
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For any ¥Ye P(#) we can write

(8) sup |P(z) | <sup | F jwz> p(@) de, ... de,| < | =y,

x x,

where = is the differentiation monomial g/dx,, 8/0,, ..., 8/dx,. Therefore from
(4), we have

b
L’

(<h )] < 0" max H>(1+ o) (a )iw)

i<r oz

(6)

?
L,

< (" max “(1 + |z ])em 2t Py(w) (i)i‘ﬂw)

Jil<rtn o

where P,(x) are polynomials of degree n - 1.

Let the number of n-tuples 7 satisfying |i|<y -+ n be denoted by N and
the product space L'x.%.xIL' by (L/)¥. We consider the linear one-to-one
mapping

. - A%
(7) T —> {(1+ |fvl)a—"ml ‘P’(ru) (83}) (p(w)}|ii<r+n

of P(#L) into (L')¥. In view of (6) we see that the linear functional vp,—
—<f, ¢> is continuous on 7Z(#}) for the topology induced by (L')*. Hence
by Hann-BANAcH theorem, it can be extended as a continuous linear func-
tional in the whole of (L)¥. But the dual of (L')¥ is isomorphic with (L™)}¥
(I2], pp. 214, 259), therefore there exist NL® functions g; (|¢|<#74 ) such
that <f, > = 3 <gi(1+ |o| )= o Py()(3[00) p(a)>.

[i]<rtn
So that <f, p> = <z+<(— V¥ @/em) (14 || )™ Py@) g:], p(@)>.
Therefore { = 3 < (—1)(3/02) [ (1 + |z])* 2! Py(z) g.], p(a)>.
|| <r+n

For each 7 we set hy(w)= [ ... [ §:i(¥1, oe) Yn) Ay ... Ay
0 1]
Since g¢; is in L®, we see that A, is continuous in £ and that

|Ba@) | <21 |@a [ lg:ll7 -
Furthermore, we have g, = h, and consequently

Jil<<r4n

This completes the proof.
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Taking » = 1 in (2) we obtain structure formula for elements of PANDEY’S
space S,(I) in the form

By=< % 1) (a)[(1+w)“~w—lz>()§ | pian

where %,(z) are continuous functions defined over %% = (0, co).

We shall now define the testing function spaces 5”0,,; and ,Spc,,,, and state
some properties of these spaces which can be established by the standard tech-
niques followed by Pawpry [1].

The testing function space L ea
Let ¢, de ' and se¥’. Let é.a(z) be the function

. O<w<l,
9) Ec,d(m) =

¢ I<wz<co.

&.a denotes the space of all complex-valued functions p(2) on I= (0 < 2 < c0)
on which the functionals f, defined by

3| £ou(a) (w =) oo,

agsume finite values. The countable set of seminorms {Bi}e, generates the
topology for &,,. It can be shown that &¢a is HAUSDORFF, locally convex,
first countable, complete, countably normed space. The space Z(I) is a sub-
space of & ; and the topology of Z(I) is stronger than the topology induced
on Z(I) by &,, and as such the restriction of any member of y;’d (the dual
space of &, ,4) to Z(I) is in 9'(I). We say that a sequence {gv(z)}2., where each
@v(x) belongs to &, 4, is a CAUCHY sequence in S oo i Bilpu—@s) tends to zero
for any non-negative integer & as u and » both tend to infinity independently
of each other. It can be readily seen that & a 18 sequentially complete.

For complex s not lying on the negative real axis and %k — 1,23, ..,
Y(s+ ) e, q.

k=0,1,2, ..,

(10) Bi(@) 2 Preal)

The testing function space & ,.
An infinitely differentiable complex valued function ¢(z) deﬁned over [ is
said to belong to &, if

(11) Te(@) 8 Trea(p) & < oo

Eo,a(m) * (a%)k (@)
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for all £==10,1,2,..., where &, .(x) is the same as defined in (9). The concept
of convergence and completeness in &, , is defined in a way similar to those
defined in &, ,. The space ¥, is also a locally convex HAUSDORFF topological
vector space. The restriction of any member of L?;,d (the dual space of &, ,)
to 2(1) is in 2'(1).

Following results can be established by following the technique of PANDEY
([1], Lemma 1).

(i) The spaces <, , and &, ., for fixed real numbers ¢>0 and d<1, are
equal in store of elements.

(i) 7, the topology generated in &., by the sequence of seminorms
{B}c, is the same as T,, the topology generated on &,, by the sequence of
seminorms {7 }e,.

4. - The Stieltjes transform on ¥, 4.

The STIELTIES transform F(s) of an arbitrary element f(x) of ,9”;4 is defined by

(12) FEFE)2 @), —

for all s lying in the compact set 2, of the complex plane not meeting the
negative real axis.

Now we are stating some theorems whose proofs are similar to those of
Paxpry [1] and hence are omitted.

Theorem 2. (The analiticity theorem). Let F(s) be the Stieltjes trans-
form of f(x) ey;d as defined in (12). Then, F(s) is analytic on 2, and for
k=1,2,3,.., )

Fo(s) = (fla), ol
(13) = ' eTail
Moreover, for positive real x,
O(z%) as x—oco ife=>0 and d<1,
0 () 4s ©>oo if >0 and d=1,
1) FO) = -
0(z—*-1) as x—>0-+ if¢=0 and d<1,

0(z—*1) as x>0+ if ¢>0 and d<1.
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The last order relation could not be obtained in the Pand ey’s space 8, (I).
Theorem 3. (The real inversion formula). For fiwed ¢> 0,d<landz>0

let F(z) be the Stieltjes transform of f(») belonging to 5”:@ defined by (12).
Then for an arbitrary element @(x) of D(I) we have

(15) Ly B (), pm)> —<f, @> as k— oo,
where

(__ x)k—l aZk—l
(16) Ly p(@)] = P —2)! 3o7 [&* p(w)],

where y(x) is an element of 5”;’,1(1 ) and the differentiation in (16) s supposed
o be in the distributional sense.

Theorem 4. (The complex inversion fo: mula). Let f(t) be an arbitrary
element of Sﬂ;d and F(s) be the Stieltjes transform of f(t). Then for an arbi-
trary element p(a) € Z(I) we have

F(—§&—in)— F(—§& 4+ in)
2ati !

<

PE» ey as 0+,
where ¢>0 and d< 1.

Theorem 5. (The uniqueness theorem). If Lf1=TF(s) for se R, and Flhl=
= H(s) for S € Qu, if 2,1 02, is not empty, and if F(s)= H{(s) for & €2,0 2,,
then f=h in the sense of equality in 2'(I).

Theorem 6. (The representation theorem). Let f be an arbitrary element
of (V;,d and @ be an element of D(I). Then, there exist continuous Junctions hi(x)
defined over I such that

rtl [ adt __Bh;
o= <.§0 (—1)* (@) [Ec,d(‘w)whl —B-s—c]’ (@)

where ¢>0, d<1 and r is an appropriate non-negative inieger.
The proof is similar tho that of Theorem 1.

Theorem 7. For fized ¢>0 and d<1, let {(i) ey:’d and define

4
$2+t2

F(z) £<f(2), >
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Then, for p(x)e 2(1),
(L, JF (@), p(@)> —<f, g2 as n—oco,

where the operator L, , is defined by
n G2F bl
Ln,w:—ag (1——-@) ’ sza.

The author expresses his gratitude to Dr. J. N. PANDEY of Carleton Uni-
versity for his valuable suggestions.
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Abstract.

An infinitely differentiable and complex valued function ¢(w) defined over I = (0,0)
belongs to Pandey’s space S,(I) if
o \*
(905; @(w)

for any fized I where & assumes values 0, 1, 2, ... and « is o fizved real number less than or
equal to 1. The topology on S (I) is generaled by the sequence of seminorms {yk},‘;o.
Pandey emtended real and complex inversion formulae of Stielijes transforms due to
Widder to S,(I)-space, but did not give a structure formula.

In this paper an extension of S, (I)-space and its dual to n-dimensions is given and
a structure formula obtained which shows thal every element of the dual space of 8,(I) is
the linear combination of the finite order distributional derivative of certain continwous
functions. The inversion formulae of Widder are also emtended to another space of
generalized functions.

vil(@) = sup (1 + 2)* < o0,
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