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JOJI KAJIWARA (%)

Holomorphic solutions of singular Darboux problems. (**)

Introduction.

A. F. MArRTINOLLI [4] considered a singular DARBOUX problem

2.

0% ou ou ou ou
xy 2w 3y = xd (z, f‘/)é} + yB(x, 7./)@ + Oz, y)u+ xy f (:U, Y, U, —6—;’8_3/—)

(1.1)
u(@, 0) = @(x) , (0, ) = P(y),

in a rectangle {(»,y)eN?; 0=<w=<a, 0<y=<b} in the plane N2 of two real va-
riables # and y. In this paper we shall treat the case that A(xz,y),B (2, ¥),
C(@, ), flxyy,u,p,4), ple) and P(y) are holomorphic functions of complex
variables. We shall seek holomorphic solutions of the problem (1.1) in a neigh-
borhood of the origin in the space €2 of two complex variables x and y and
discuss the existence and uniqueness of a real-valued real analytic solution
u(z, y) in a neighborhood of the origin of the singular elliptic equation

0% o2 0 7
P2y (@ + yz)(a;: + gyi:) =44 (z,y) (w 5}—; +y %)‘f— 4B(z, y)u +

ou

+ 4(z? -+ y?) ( Cl@, y)+ Dz, y) ?—; + B (@, y) a—y)

(*) Indirizzo: Department of Mathematies, Faculty of Science, Kyushu University,
Fukuoka, 812 Japan.
(**) This paper was prepared when the author was a short-dated research fellow
of Research Institute for Mathematical Science of Kyodto University in December, 1971.
Ricevuto: 18-1-1972.
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as an application, where 4, B, 0, D and F are real-valued real analytic func-
tions in a neighborhood of the origin in %2

1. - Integral equations.

Let A(z,y), B(z,y) and C(z,y) be holomorphic functions in a didise U=
= {(», )€ €2; |#|< R, |y|< R} satisfying

(1.3) | Az, y) | =M , | B, y) | =M , |Cla, y) =M

in Uz. Let g(z) and P(y) be, respectively, holomorphic functions in lz|< R
and |y | <R satisfying

(L) @(0)=0, |p@)|<m, |¢'@|=m, PO)=0, |[P@E)|<n, [¥'@G)|<m.
Let f(z, ¥, w, p, ¢) be a holomorphic function in
F={y 4 )€ [o|<B |y|<R, lu—el)—-Fy)|<r
lp—¢'@|<r lg—¥'@)<r}

satisfying

[f(@y ¥y, Dy O |SM,
(1.5) |y yyur Py @) — f(@, Y, u Do Qz)lé

SM(|ug— e |+ |1 — 22| +lan— 1),

for (z, ¥, uy P,y Q); (@) Y, Uy D1y 01)y (@, Yy Uny Do, @) E L

Lemma 1. If u(z,y) is a holomorphic solution of (1.1) in Ug satisfying
(z, y, u, OufOm, Jujoy)€F for (v,y)€ Uy, then we have

(1.6) v (@, 0)¢' (@) + Oz, 0)p@) =0,  @(0)=0

and

(1.7) yB(0,y) ¥ (y) + CO, ) P(y) =0,  ¥(0)=0.
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Moreover we have
(1.8)  u(z,y) =)+ Ply)+

v sdisy 200 ipey PO L s e g

g as at
fe ] : +

1 (s,t, nis, 1), 248 21 )} a .

as ' ot

Proof. Substituting y =0 and #=0 in (1.1) respectively, we have (1.6)
and (1.7). Since (0u/0y)(0,y)=¥'(y) and ¥(0) =0, we have (1.8) by direct
integration of o%u/ox 0y.

Lemma 2 (ScawWARzZ Lemma). Let a(x, y) be a holomorphic function in Uy
satisfying a(z, 0) =0, a(0,y) =0 and

la(@, y) | <L

in U,. Then we have
L
1.9) la(z, y)| = =

wn Up.

Proof. There is a holomorphic function b(z, y) in Uy such that a(z, y) ==
= ayb(@, y) in Uz. Let ¢ be a positive number with ¢ < R. By the maximum
modulus principle, we have '

Max fa(m, ) |
Max |b(z, y)| =Max |b(z, y)| = El=e ll=e <

lel Se vl <o el = e, Iv] = o e

.

ARy

Hence we have |b(z, y)|<L/R? in Uj.

Lemma 3. Assume that 6 M <1. Then the existence of a solution of the
problem (1.8), which is holomorphic in a neighborhood of the origin, is unique.

Proof. Let u(z,y) and o(z,y) be holomorphic solutions of (1.8) in U,.
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We shall prove that there holds w(w, ¥) = v(», y) identically. By the theorem
of identity, we may assume that 0 <d<<1. We put

w(@, y) = (@, y) — v(®, ¥) .

Then w(w,y) satisfies

F O sdsy %0 ime g 200 L o, tyws, 1)
(1.10)  w(z,y)= f ds j { ’ as ’ ot ’ ’
(i} 0

+

8t

+f ( 8y by u(s, 1), uls D) ol ) -

28 ot

o s 1 o0 )t
_f(s’ 8, (s, 1), (s, t), ?/;SS ), y;st ))}dt.

We put

0
w w(w, Y)
ox

& == Max Max ([w(w, y) 1y
¥

ow(w, y)
Y oy I)

’

By the maximum modulus principle we have

IA

£ ow(x, y) £

l =5 ‘ oy l E
in Us. Since

w(®, 0) = (ow/ox)(z,0) =0, w(0, y) = (Ow/dy)(0,y) =0,

by Lemma 2 we have

dw(s, ¢ dw(s, ,
54 (s, 1) w(s, 1) w(s, 1) -
< e

. + tB(s, t) 5 + O (s,t)w(s, t)

st 62
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in Us. By (1.5) we have

a ’
7 (e, 22 2D )1 {58005, 222, 2 )| =5

0s ot ot )

By (1.10) we have |w(z, y)|<6M¢ in Us,. Similarly, we have

ow(z, y)

ow(z, 4
@

Me ‘y , <6Me

Hence we have ¢<6Me. Since 6 < 1, we have & = 0.

In case that M =1, the existence of a solution of the problem (1.8) is not;
necessarily unique as we will give an example in the last paragraph of this
paper.

2. - Linear equations.

Let D(#, y) be a holomorphic function in U, satisfying | Dz, y)|<L in Up.
Consider the linear problem

o2u

0z 0y

xy =z (z, J) — + yB(w, ./) + C(@, y)u 4 xyD(x, y) ,

2.1)
ulw, 0) =g@), (0, y)=Py).

Let $r be the set of all holomorphic functions in U, which satisfies

[o]a = Max Max ( v(x, y) ’l}’o’v(w, ) l 1 2v(w, y) ‘ ) “too.
(= v) €Up xy Kj
Lemma 4. For veHr we put
sA (s, 1) v(s’ D\ iBs, 0 ”(;t) £)v(s, 1)
2.2)  (Sv)(w,y) = fds f{ p } dt

in Up. Then Sve $p and we have

2.9) 1Sl =3,
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Proof. Since we have

ov(s, t) + tB(s, ) ov(s, t)
os

sA (s, 1) ~+ O(s, t)ov(s, 1)

=3M |v]la,

8t

we have |(Sv)(z,y)|<3M|v|,|ey| in Up by (2.2). Similarly we have

@ 9| = aplaly], |25 @

” =3M|v|z|a|

2(8v)
ox

in U,. Hence we have (2.3).
For ve H, we put

(2.4) (Tv)(=, y) = (Sv)(®, y) + fdt?ff)(s, t)de.

Lemma 5. For ve9rp, Tve Dr. T{p@)+ P(y)) belongs to Hr and sal-
isfies

@.5) |7 +Ple= (2EZEE 1)

Proof. Since

(8, 1) = sA(s, 1) @'(s) + tB(s, ) P'(8) + Cls, 1) (g(s) + (1)) =0

in Uy when s=0 or t=0, by Lemma 2 and (1.4) we have

#&t)| _ 2B+ 1) Mm
st = R?

in Uz. Hence we have (2.5).

Proposition 6. Assume that 6 M < 1. Then the problem (2.1) has a unique
holomorphic solution w(xz, y) in Ug; u(®,y) — ¢(@) — P(y) belongs to Hr and sat-
isfies

2R+ 1) M
(2.6) Ju—p—Plas2 (—‘—R—LT n; ) .
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Proof. The problem (2.1) is equivalent to the integral equation
(2.7) u(@, y) = (@) + P(y) + (Tu)(z, y) .

We shall solve the integral equation (2.7) by the method of successive appro-
ximations:

Uns1(@y ¥) = @(@) + P(y) + (Tu.)(z, y) (n=1),
(@, y) = @)+ ¥Yy),

in Up. By Lemmas 4 and 5 {un(z, y)} can be defined successively so as to he
a sequence of holomorphic functions in U,. We put

Va(y Y) = Un 1 (@) Y) — wa(®, Y) (n21).
Then we have

Va(@, §) = (S0a2)(, ¥) (n=2).
There holds v,(z, ¥) = (T(p + ¥))(z, y).
By Lemmas 4 and 5, we have

st (R 1 n )

Since 6 M < 1, {u.(x, y)} converges uniformly to a holomorphie solution u(z, y)
of (2.1) in U, which is a unique solution of (2.1) by Lemma 3. Moreover we
have (2.6).

3. - Non-linear equations.
Now we will return to the problem (1.1), that is, the integral equation (1.8).

Agssume that 6 < 1. We shall solve it by the method of successive approxi-
mations:

Dy py Oy Mg ou, Bu,
zY W—wA ox +.7/B oy +0’”’n+l+wyf(wa?/’un7 _8—:2;—’ ‘a‘;)
(3.1)
Uni1(, 0) = @() , Unpa(0, y) = ¥Ply), (n21),

(3.2) w(z, y) = (@) + P(y) .
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Assume that u, (@, ), (2, ¥)y ... w.(2,y) are well-defined in Us for suitable
6> 0 with 6<1 and 6<R. We put

V(@5 Y) = Uy (@ Y) — Up(y Y) (p=1,2,... n—1).

Then v,(z, ¥) is a unique holomorphic solution of the problem

v (w,y) dv,(@, y) | oy(, y) \
ox oy =ud ““'“é;;_ i ?/B oy + C/vzz(wy il/) an
3.3 du, Ou QUyy  OUpH
8-3) +wf’/{f(w7?/9um’5:f7‘5;)“7‘(9772/yup~1;_a‘;‘“17‘5%;'1 ;
L vy, 0) =0, 2,(0,y) =0,

for p=2,3,.. n—1. The problem (3.1) has also a holomorphic solution
in Uy for n =2 such that v, =u,— ¢ — ¥ Hp and

1(2(R 4+ 1)m
W 2 ]
lviln= 3 ( =2 F 1)

since 6 M < 1. Assume that v, € Hp and

572 (2(R + 1)m
95 < 3 (T -{—1)

for p =2, 3,... n. Then we have

ou ou,, Ou, g DUy
f (wa Yy Upy 6—:: ) _aj) —f (wy Yy uw—ly‘éﬁ”‘ ’ “”“a';;_)

00,
o

e

gM([v,,_ll + i

672 (2(R + 1)m
<38 M o | e
) =3M 3 ( T - 1) é

671 (2R -+ 1)m
)

since 6 M < 1. By Proposition 6, we have v,€ s and

51 (R 1 '
(3.4) loolls< — (~(~—R—)—?-7—b + 1) :
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Thus we have proved (3.4) for p=1,2, .... n.
Now we choose J 80 as to satisfy

L 87’
<M
(3.5) 0 < d<Min {R’ [2(R + 1)/)71,/R2] — 14 37} '
Then we have
2(R+ 1)m
_ auﬁ ' E}up_ o . WRZ—
[y, 4)— iy (2, )|, f Fra () ! ) }’é}l‘ ¥ (?/)‘< 3(1— 0)

25

LOET

for p=1,2,...,n + 1. Thus for a positive number J satisfying (3.5) {ualz, y)}
can be defined in Us and converge uniformly to a unique holomorphic solution
(@, y) of the problem (1.1). We summarize the above result in the following

theorem.

Theorem 1. Let A(w,y), B(z,y) and C(z,y) be holomorphic functions in

{(z, )€€ || < R, |y|< R} satisfying

| A (e, Y| =M, _ | B(z, N=M, | C(ar, NI=M .

Let (@) and P(y) be, respectively, holomorphic functions in {xe€; |2|< R}and

{ye €, ly|< R} satisfying

(3.4) 2A(w, 0)g'(x) + C(z, 0)p(z) =0, P(0) =10
nd
(3.5) yBO, )P (y) + CO, y)P(y) =0, P(0)=0.

Moreover, let f(x,y, u, p, q) be & holomorphic function in
{(wa Yyu, py, ()€ €% ||< R, |y|<R, lu— p(@) — P(y) | < r,

lp— @@ <r, lg—P"@) <}
satisfying

[f(@, y, ’Lé,ﬁ, q)I=M,

(3.6) 1@, ¥, w1, 2y, 01) — [(@, Yy Ues Doy EBI=

éM(|u1"u2| + ]Px—le—H(h—(jui) -
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Assume that 6 M << 1. Then for sufficiently small 6 > 0, the problem (1.1) has a
unique holomorphic solution in {(x,y) e €2; |x|<d, |y|< d}.

Theorem 2. Let A(z,vy), B(z,y) and C(x,y) be holomorphic funciions
given in Theorem 1. Let f(,y, u, p, q) be a holomorphic function in

{(”:?/7“71%@6555 2| <R, |y|< R, lul<r, |pl<m, lg| <7}

satisfying the condition (3.6). Assume that 6M <1, (4 B) (0, 0) = 0,
(C]A)(0, 0) = non-positive integer and (C|B)(0, 0) 5= mon-positive integer.
Then for 6 = Min (R, 3r/(1 + 3r)) the singular hyperbolic equation

2%

ou ouw ou Ou
(3.7) vy 2 0y =a’A5;;+?/Bé‘y‘+0u+w?/f (w1 Yo%y 500 5"7;)

has a unique holomorphic solution w(z,y) in {(z,y)e 6% |#|<d, |y|< o}

Proof. Let u(z,¥) be a holomorphic solution of (3.7). Then g(2)= u(z, 0)
and Y(y) = u(0, y) satisfy (3.4) and (3.5) respectively. By the assumption of
Theorem 2, ¢ and ¥ are identically zero. We have Theorem 2 by Theorem 1.

4. - Singular elliptic equations.

Let A(w,y), B(z,y), Clz,v), D, y) and E(z, y) be real-valued real analytic
functions of real variables ¢ and y in a neighborhood of the origin in %=
Consider a singular elliptic equation

0% % ou

7,
(@* + 9?) (W + 5y—) = 44 (z,9) (w =ty 5;) + 4B(@, y)u +

(4.1)
+ 4@ 4 9?) (o(w-, 1)+ Diz, y) = + B, ) 21;) .

For sufficiently small » > 0, 4, B, ¢, D and E can be extended to holomor-
phic funetions in U, = {(m, yye @2 |z | <7, Iy | < 'r} of two complex variables
x and y satisfying

| Az, y) | =M, | Bz, y) | =M ,

|Clz, y)| =L, | D(z, y)| =L, | B, y)| =L .



[11] HOLOMORPHIC SOLUTIONS OF SINGULAR DARBOUX PROBLEMS 27

Let u(z, y) be a real-valued real analytic solution of the equation (4.1) in a
neighborhood of the origin in %M2; wu(z,y) can be extended to a holomorphic
function in U, sufficiently small .

Conversely let w(z,y) be a holomorphic solution of the equation (4.1).
The real part of u is a real-valued real analytic solution of the equation (4.1)
when we regard independent variables # and y as real variables. So we had
better consider the equation (4.1) in a domain in the space €2 of two complex
variables « and y, even if our aim is to seek real-valued real analytic solutions
of the equation (4.1) with respect to real variables z and Y.

So we regard x and y as complex variables and perform changement of
independent complex variables:

g 2te
2=y T2
C=an—iy 2—¢

Y = .

y 2¢

Then the equation (4.1) become

o2 o o . .
w2) = 5 = A(z£+5 £)+Bﬁb+zé(0+ (D—f-'L'E)%;“{‘ (D—w)%g).

Let u(z, y) be a holomorphic solution of the equation (4.1) with (0, 0) = 0.

We put

(@.3) s=u(3.2), Po=0 (5.5)-

Then we have

(4.4) oA (2 -) OR: (2 —2—) P& =0,  ¢0)=0,

s Z , 4 4

By Proposition 6, we have the following proposition.
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Proposition 7. Assume that 6 M < 1. For any holomorphic function ¢(z)
and W) in {ze€; |2|<r} and {{e€; |0 | < 7} satisfying (4.4) and (4.5) respec-
tively, the problem

2 o2 a 5
(x® -+ y?) (a;—{— a_yi:) =44 (z, y) (wé—z—l— yég) 4+ 4B(@, y)u -+
2 )
(4.6) +4B(m2+?/2)(O(w,y)+D(w,7)£+E(w,y)%),
u(g’gi)=<p(z), u(é’ 5;5)"—“—‘?((;‘),

has « unique holomorphic solution u(w, y) wm U,e.
By Theorem 2, (4.4) and (4.5), we have the following proposition.

Proposition 8. Assume that 6 M <1, 4(0,0)=0 and (B[A)(0, 0) 5= non-
positive integer. Then the singular elliptic equation (4.1) has a unique real-valuéd
real analytic solution w(wz, y) in {(z,y) eW?; |2|<7/2, |y|< 7/2}.

Example.

Tet 4 and B be real numbers. Let us seek real-valued real

analytic solutions of the singular

o2

+

elliptic equation

%u

(4.7) (@ + y?) ( ) = dAu+ 4(z*+ y*)B.

ox® oy?

At first consider the case B 0. Let u(w,y) be its solution in a neigh-
borhood of the origin and leb

w(@, y) = zun(m7 )

ne=Q

(4.8)

be the homogeneous polynomial series expansion of u(z, 7). For n =2 each
homogeneous polynomial u,(, y) of degree n is a solution of the homogeneous
equation

% o2
£

a—aﬁ'ayz

@+ 9?) ( ) — 4du

(4.9)

and u.(z, ¥) is a solution of the equation (4.7). When B 5= 0 the equation (4.7)
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has a homogeneous polynomial solution of degree 2 if an only if As1. If
B0 and 4 1,

B(x? 4 y?)
(4.10) w(z, y) = ‘_1:-7_:/_

is & homogeneous polynomial solution of degree 2.

When B =0, the equation (4.7) has a homogeneous polynomial solution
of degree 2 if and only if 4 =1. When B=0 and 4 = 1, the polynomial
defined by

(4.11) ul(, y) = a@® + y?)
is a solution of the equation (4.7) for any real number a==0. When A4 — 0,
the set of all solutions of the equation (4.9) is precisely the set of all fune-

tions w(x,y) which are harmonic in neighborhoods of the origin.

Letb

n
W@, y) = 3 a,aryn-r
=0

be a homogeneous polynomial solution of degree » of the equation (4.9). We
introduce polar coordinates by

(4.12) x=1rcosl, y=rsind.

Then we have u(r cosl, » sin0) = r» () where

(4.13) f(0)= > a,cos* B sin"—0 .

ye=0

f(0) satisfies

(4.14) 1'0) + (n*—44)§(6) =0 .

(4.14) has a non-trivial solution of type (4.13) only when 44 = n%:—p? for
an integer p with 0<p=n. Then the solution of the equation (4.14) is of the
~ form

(4.15) f(6) = C exp [ip0] + D exp [— ipl] .
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By (4.12) we have

(4.16) 7? exp [ip0] = (v + y)”, 2 exp [—ipl]= (x—iy)".
Substituting (4.16) in «(r cosf, r sin ), we have

(4.17) w(m, y) = (@t -+ y2)P(C + iy)? + D@ —iy)?) .

In order that w(z,y) given by (4.17) is a homogeneous polynomial solution
of degree n of the equation (4.9), it is necessary and sufficient that n —p =
= 2¢ for a non-negative integer ¢. Let X, »,y) and Y, (x,y) be, respecti-

vely, the real and imaginary parts of (» -+ 4y)"—*® when 2 and y are regarded
as real variables. Then

(4.18) (@, 3/) = (2% + ?Jz)“(bXn,q(fU; y) + GY".Q(w, ?/))
is a real-valued homogeneous polynomial solution of degree n of the equa-
tion (4.9) for any non-zero real vector (¢, d). Summarizing the above result,
we have the following proposition.

Proposition 9. There occur four cases.

(1) A=1, B==0. There are no solutions of the equation (£.7).

(2) A=1, B=0. The function given by (+.11) is a real-valued real analytic
solution of the equation (4.7) for any real number a.

(8) A1, 44 = n2— (n— 2q)* for some pair (n, q) of non-negative integers
n and q with 2¢<n. Any real analytic function w(z,y) of the form

(4.19) ulz,y)= 1—A4 -+ \ ( (gvg -+ yg)q(bn,axn,a (@,y) + cn,ayn,q (@) ,
A=mn~(n—2¢)*
20<n

Bty s

is a real-valued real analytic solutions of the equation (4.7) for any real numbers
by, and c,, such that (4.19) converges in a neighborhood of the origin.

(4) As£1, 4452 n2— (n—2q)? for any pair (n, q) of non-negative integers

n and g with 2¢g=n. The function defined by (4.10) is a unique solution of the
equation (4.7).

In other words, there is a discrete subset 4 of ® such that the equa-

tion (4.7) has a unique real-valued real analytic solution (4.10) for A ¢ 4.
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This means that some restriction on M can not be omitted in Proposition 6
and 7, although the condition 6 M < 1 is not a sharp one.
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