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Integral equations of convolution form. (**)

Introduction.

Integral equations of the form
i
| pt—a)f(z)dae = g(t),
[}

where f or ¢ is the unknown function, are of immense importance due to their
frequent occurrence in applied mathematics. This paper gives the solutions
of three such equations using LAPLACE transform. These results generalize
theorems earlier given by JeT Wrmp ([4], p- 44) and RuUsIA ([6],, pp- 119, 123,
127, 129; [6],, pp. 16, 17; [7];, pp. 67-70).

1. - Definitions and results used.

If

w©

(1.1) @(p) =! exp [— pt]f(¢) dt,

then g(p) is called the LAPLACE transform of f(t) and £(¢) is called the inverse
LAPLACE transform of ¢(p) and this relation is denoted by

P(p)=1() .

(*) Indirizzo : Assistant Professor of Mathematics, Regional Engineering College,

Calicut, India.
(**) Contents of this paper is part of the author’s Ph.D. thesis approved by the

University of Rajasthan, 1970. - Ricevuto: 12-XTI-1971.
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Re (a) denotes the real part of the complex number a.
A(k, s) denotes the set of & parameters

sik, (s + 1)/, (s+ 2)/ky ooy (s-F k—1)/E .
:(a;), denotes the set of n parameters a,, a, ..., G,.
(a;, €;), denotes the set of n pairs of pammeters
(@, 1)y (Ggy €3)y eory (Any €n) -

o . LR e+ e, k) T'(ay -+ e, k) ... I'(a, + e, k)a*
(1.2) »We[1(@55 €5)n3 1(b35 f1)es @] —kgo T, + 20 L0y & fo k) oo T(bg + fo) 1

is the generalized hypergeometric funetion defined by WrIGHT (I71,, p. 287 )and

pay =S
(1.3) J(@) ",230 rIT( + v+ pr)

is the generalized BESSEL function defined by WRIGHT ([7]., p. 257 ).

The functions (1.2) and (1.3) being special cases of the H function defined
by Fox ([2], p. 408), their LAPLACE transforms can be obtained as special
cases of the LAPLACE transform of the H function proved by Guera ([3], p. 100).
The following two special cases will be used in this paper:

(1.4) #%,9,[(6, 1); (L4 @, b); —et?] = T'(0) p~~*(1 4 ep~*)°,
provided Re(p)>0, 2>b>0, Re(1+ «)>0 and |argep™|<=(2—b)/2;
(1.5) 1278 (at#) = pi~= exp [— ap~F],

provided Re (p) >0, 1>5> 0, Re (1+ o) > 0 and |argap™|<z(1—p)/2. From
ErpELvI ([1], pp. 129-131) we have:

(1.6) I f(t)=g(p), then exp[—atli(t)=g(p+a).
(L7 I f@)=g(p), F0)=7(0)=..=7""0)=0 and f()

is continuous, then f® () ==p=g(p).
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(1.8) It filt) =gq(p) and f,(1) =g.(p), then

¢

Jhi@) fo(t—2) do = g,(p) g:(p) ’

0

(1.9) 10 B (1) {Bidns (at”k =
#F(a)P_dnﬁanﬁ(“f)m; Ak, 6)3 1(B3)ns (ka/p)k] ’

provided m+-k<n-+ 1, Re (6) > 0, Re (p)> 0 when m-+ k<n and
Re [p+ ka-exp [2mir/k]] > 0 for r = 0,1, ..., k—1 when m++k=mn-1.

2. « The integral equations.

Theorem I. Fach of integral equations
(2.1) g(t)= Aj[(D + a)*f(t —a)] exp [— azla®,yn[(6, 1); (1 + «, b); ca*] dw |
and
(2.2) f() = Baft[(D + @) gt —@)] exp [—axz]a’ .pu[(— 6, 1); (14 B, b); ea*] dar
8 the solution of the other, provided

93) [2>0>0, Re(l+2)>0, Re(1+f)>0, ABI(6)[(—05) =1,
B2 Natpr2=mtn,

(2.4) f0) =F(0) = ... = f_(”"”(O) =0, ™ (@) is continuous ,
(2.5) g0)=¢g'(0) = ... =g 0) =0, 9™ (@) is continuous

(2.6) m and n are non-negative integers and D represents differentiation with
respect to t—uwx .

Proof. TLet f(1) = F(p) and g(f) = G(p). Using (1.4) and {1.6),
exp [—at]i*,pi[(6, 1); (1+ &, b); 6’ == (p + @) *[1+ o(p + a)2]-21(5) .

Using (1.7),
D+ a)f(t) = P(p)(p + o)™,

provided the conditions (2.4) are satisfied.
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Using (1.8), the integral equation (2.1) becomes
(2.7) G(p) = AT©O)(p+ e)" =1 —e(p+ @)1 L (p) .

Similarly, the integral equation (2.2) becomes
(2.8) P(p) = BI(—0)(p+ a)?#[L—c(p+ a)"1°G(p) -

The equations (2.7) and (2.8) can be obtained from each other when
ABI(—08)I'(8) =1 and m-+-n=c- p+ 2. Hence, by LERCH’s theorem (151,
p. B), it follows that each of the integral equations (2.1) and (2.2) is the solu-
tion of the other.

Special cases. Putting b = /s, where » and s are positive integers, the

theorem (2.2) gives the following result involving Mze1Jer’s ¢ funetion.
Each of the integral equations

t Als, 1 —6
(2.9) g(t)=4 f [(D+a)"f (t—a)lexp[—ax]a® GLiy, [cw‘ AEZZ o) A()r,_@]d”’

and

[ A(s, 14 )
A(s, 0), Alr, —ﬁ)]d”

(2.10) f(t)=B f [(D+a)"g(t— )] exp [— ax]zf Gt [cw’

is the solution of the other, provided Re (14 &)>0, Re (1 + B)>0, r< 2s,
a4 p -+ 2=m-+ n, the conditions (2.4), (2.5) and (2.6) of (2.2) are satisfied and

I(8) '(— 0) AB = y1=m=n(2a) " .

When 7 =s =1, the G functions in (2.10) reduce to confluent hypergeo-
metric functions. Put further 4 =1, a=m =0 to get a theorem by JET
Winp ([4], p- 44).

Theorem I1I. Bach of the integral equations

(2.11) g(t) = A [ [(D - k)™ f(t — m)] exp [— ka]o= It (ax?) de
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and
(2.12) ity = %f D+ k) gt—a)] exp [— kx]zb JY(— az®) dw

is the solution of the other, provided m+n=a--p-4-2, 1>b>0, Re (1-- a) >0,
Re (14 B)> 0 and the conditions (2.4), (2.5) and (2.6) of (2.2) are satisfied.
The proof of (2.12) is similar to that of (2.2), using (1.5).
Special cases. Putting b= r/s, where r and s are positive integers, the

theorem (2.12) reduces to the following result involving MEWER’s G function.
Each of the integral equations

(2.13) g)) = 4 [ [D+ Ky f(t— )] exp [— kelaw 63y a7 | A(s, 0), Alr, —a)] do
and
(2.14) f(t)ZBJ[(D—HC)"g(t——w)JeXp[— ka]af Gger [(— 1) ar| A(s, 0), A(r,—B)] da

is the solution of the other, provided r<s, Re (14 «)>0, Re (1+ f)> 0,
-+ f=m+n-+ 2, ABrmn3 —5(27)™* and the conditions (2.4), (2.5) and
(2.6) of (2.2) are satisfied. :
When r =s =1, the @ functions of (2.14) reduce to BESSEL functions.
Various special cases of (2.14) were proved by Rusia ([61;, pp. 67-70).

Theorem III. Ifk,m,n,r, s are all integers, r> 0 Re (a)> 0, Re (p)>0,
r+8)+k+m=a-p,

F(0) = 1'(0) = ... = f=1)(0) = 0 = g(0) = ¢'(0) = ... = g¥™(0)
and {9(2), g(@) are continuous functions, then each of the integral equations
t
1
(2.15) ¢(t) = mf{(ﬂ + O [(D + b)"+ @] g(w)} exp [— bt — )]t — @)1 -
g

ol o[s 4 v; A(r, 2); — (at — az)r/r] dz



14 V. C. NAIR [6]

and

(2.16) g(?) { (D + b)"[(D + b) + a1* f(2)} exp [— b(t — 2)}(t — @)P~*
P(ﬁ)
Fn—uv; A@r, B); — (@t — az)fr]de

is the solution of the other, where i is the number of times f(x) is differentiated
in (2.18), j is the number of times g(x) is differentiated in (2.15),

flx) = exp [—ax] [ exp [ax]f(x) dw

d 1 d
p=2 L= i@, 5

The proof of (2.16) is similar to that of (2.2), using the following special
case of (1.9):

11, F . [v; Ad(n. «); — (at/n)"] = (@) p™-*(p"+ a”)~°,

provided Re (x)>0 and Re(p -+ a)>0.

Special cases. Put r=1, b=Fk=s=0 to get a theorem by JET WIiMP
(141, p- 44).

Various results of Rusia ([6];, pp. 119, 123, 127, 129; [6],, pp. 16, 17 ) can
be deduced from (2.16).

I am highly grateful to Dr. C. B. RATHIE for his keen interest in the pre-
paration of this paper and to the Principal, Calicut Regional Engmeenng
College, Calicut for giving the facilities.
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Summary.

See the Introduction.
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