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G. TEPPATI (%)

On the existence of congruences

in general algebrae. (**)

ad Axtonro MAMBRIANI per il suo 75° compleanno

1. - Introduction.

In a previous Note [1] we have formulated within a framework of general
algebra some propositions that ensure simplicity from irreducibility for a wide
class of algebraic structures. In this context some results on the uniqueness
of the conguences on general algebrae were stated and applicated to certain
types of algebrae with lattice operations. On the other hand, the problem
of the existence of congruences was not investigated.

Thus in this Note we concern ourselves with some existence properties
of congruences in general algebrae, obtaining a necessary and sufficient condi-
tion for the existence of congruences (Proposition 1), which, as expected, con-
siderabily bounds the permissible algebrae. As an application of this result,
we give a similar condition in general algebrae with lattice operations and
complemented principal ideals (Propositions 2 and 3) (this latter is the same
class of general algebrae examinated in our preceding Note 1) @.

(*) Indirvizzo: Istituto di Matematica, Universita, 43100 Parma, Italia.

(**) Work supported by C.N.R. (Italy), under the contract n. 73.00283.02. — Rice-
vuto: 10-VI-1974.

(1) This elass is of interest in a axiomatic formulation of quantum theory, which
refers to a complete, atomie, orthocomplemented, weakly modular and satisfying-the-
covering-law lattice.
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Al
2. - Existence of comgruences in general algebrae.

As far as concerns the basic concepts that will be used in the present paper,
we refer to definitions and notations which are usual in the literature on
general algebrae [2], (3], [4]: in particular we adopt here the conventions of
the above quoted note on this subject [1].

Thus, a set will be denoted by 4, its elements by a, b, ..., an algebraic
operation on 4 by w, the action of w on a n-tuple (a, ..., ay,) of elements
of 4 by a,...a,, o, a set of algebraic operations on A by 2, a general algebra
by (4, ). Furthermore, if # is a binary relation on 4 writing ax b will mean
that s relates ¢ to b (2). A congruence on A will be usually denoted by w,
even in the case of the trivial and diagonal congruences.

We give now the following definition.

Definition 1. ZLet (4, Q) be a general algebra, let & be a derived opera-
tion (%), and let O be the set of all derived operations on A. An element 7, O
will be called elementary translation if it is o unary operation defined by

Veed, Tol By eee iy By e Uy

where a,, ..., ay, €A are n,— 1 fived clements and o is an algebraic n -ary
operation € Q. More generally, a wnary operation 7: A — A will be called a
transtation if v is the identity, or if © can be expressed as a product of a finite
number of elementary translations.

The interest of considering translations lies in the following result (4).

Proposition A. Let (4, Q) be a general algebra and let w be an equi-
valence: then w is a congruence if and only if, for any a,be d and for any
translation v, anb = atmbr.

In the following definition we take into consideration a binary relation
which will used below.

Definition 2. Let (4, 2) be a general algebra and let S be o subset of A.
Let v be a translation. We denote by St the set obtained from 8 by applying <

(*) For the definition of subalgebra, congruence and homomorphism, see the
ref. [2], [3] and [4].

(*) For the definition of derived operation, see particularly the references quoted
in footnote (2).

(*) See ref. [3], p. 87.
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to every element of S. Given now a pair (a,b) of elements of A, and @ subset S
of A, we define a binary reflexive and symmetric relation R in the following way:

a Rb(mod. S)<>a =10 or a,beflSt,

where T is any translation of A.
The following proposition is known (°).

Proposition B. Let (4, 2) be a general algebra, let S8 be a subset, and
let R be the above defined relation on A. Let 7, be the following tramsitive exten-
sion of R, defined by:

Ya,be A, a m,b(mod. 8) <=3 (finite) » ,
Tt = @y @yy ooey Q=102 Viyi= 0,1, ..., %, @;_, Ra;(mod. §) .

Then the equivalence 7, is a congrucnce, and it is the least congruence which
has a class containing S.

The next definition allows us to consider a particular class of subsets of
a general algebra (4, Q).

Definition 3. ILet (4, 2) be ¢ general algebra. A subset S of A will be
called @ normal subset of (A4, £2) whenever there exisis a congruence s on (4, £2)
that admits 8 as & congruence class (°).

Therefore we may enunciate as follows a necessary and sufficient condi-
tion concerning the existence of a congruence on a general algebra.

Proposition 1. ILet (4, 2) be a general algebra and let S be a subset
of A. Then 8 is a normal subset, if and only if, for any translation T:

(&) ((EIaeSiareS):SrcS) ).

Proof. We first prove necessity. Let § be a normal subseb with respect
to a congruence w. Let 7 be any translation such that an a€ 8 exists for

(%) See ref. [3], p. 98, Exer. 3 and 4.

(°) It may be stressed that every single clement a€ A is a congruence class for
the diagonal congruence, while the entire set A is the congruence class for the trivial
congruence.

(*) We note that the proposition is trivially true in the two cases of preceding
footnote (°).
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which are 8. TFor every be S we have (Proposition A) anbd =a 77 br; as
are S it follows bre S, so StcS.

We prove now sufficiency by observing that the congruence 7, of Proposi-
tion B is the least congruence which has a class containing §: as the condi-
tion («) holds, such a class coincides with S.

Thus Proposition 1 is proved.

3. - Applications.

As a first application of Proposition 1, we shall consider the particularly
simple case of a general algebra endowed with an invariant element (see
Def. 4 Dbelow).

Definition 4. An invariant element e of & general algebra (A, Q) is an
eloment such that {¢} is a subalgebra of (4, 2). If a general algebra (4, Q) has
an wnvariant element e, we will call O, the set of all those derived operations that
preserve ¢. Moreover, we will call e-ideal of (A, ) associated to the invariant
clement ¢ cvery subalgebra of (4, 2,) (8).

Let us now suppose that a general algebra (4, Q), endowed with an inva-
riant element ¢, satisfies Q2 == &,. In this case for every c-ideal § the condi-
tion of Proposition 1 is automatically satisfied, and every e-ideal is a normal
subset.

As a second application of Proposition 1, we discuss here the less imme-
diate case of a general algebra with lattice operations. The next Proposition
is an easy consequence of our Proposition 1.

Proposition 2. ZLet (4, Q) be a non-trivial general algebra with lattice
operations. Let A, with respect to a set of lattice operations contained in Q, be
a lattice with a zero element O. Then an ideal 8 (with respect to the lattice opera-
tions) is a normal subset if and only if, for any translation ,

() (OrelS =8rch).

Proof. Let us first prove necessity. As S is an ideal, 0 € §: moreover,
S is a normal subset, so the condition («) of Proposition 1 holds. Let QL be
the set of all derived lattice operations. Thus, for every translation e QL

(%) From this definition it follows that, if x is a congruence on a general algebra
{4,£2) endowed with an invariant element ¢, the set of the elements of 4 which z
relates to ¢ is an e-ideal of (4, Q) associated to e.



[5] ON THE BEXISTENCE OF CONGRUENCES IN GENERAL ALGEBRAE 347

such that the existence of x, € S with the property z,7e€ S implies Stc S,
we have Ot c w7, from O caz, and the isotony of 7; it follows Ore S, as
S is an ideal.

Thus (c) = ().

As concerns sufficiency, the proof is the same of the one given in Proposi-
{ion 1, second part.

This concludes the proof of Proposition 2.

We give here two simple examples of non-chain lattices in order to illus-
trate Proposition 2 (7).

As a first example, we consider the lattice I, with four elements {0, a,,
a,, I}: then the ideal [0, a,] (or [0, a,]) is & normal subset, as condition («')
holds, and [0, a,] (vespectively [0, a,]) is a O-ideal of L.

As a second example we take the self-dual modular lattice L; with five
elements {0, a,, d,, ¢;, I}: in this lattice the ideal [0, a,] is not a normal
subset, as the translation 7: 2 — (¥ U a,) N a; maps O on O but a, on a4
(moreover [0, a,] is not a O-ideal).

In the next Proposition 3, we go over to a further condition which ensures
validity of condition («') in Proposition 2.

Proposition 3. Let (4, Q) be a non-trivial general algebra with latiice
operations. Let A, with respect to a set of lattice operations contained in L2, be
a lattice with zero element O and complemented principal ideals. Let S be an
ideal of A with respect to the lattice operations. For every tramslation T’ such
that Ot' = 0, let St' C S hold: then, for every T & O, such that Ore S, Stcl.

Proof. Let § be an ideal (with respect to the lattice operations) of A.
Let 7€ 2, be a translation such that Or=0e §8: let « be an element of §
and let ar =2 hold. We must prove that ze S.

‘We have that

Oca=0tCcar<>bcCcz.

Let b be a complement of b in the principal ideal [0, 2] and let we con-
sider the derived translation xz M d': then we have OtNV =bNd =0,
from which it follows from the assumptions, that arNbd' e€8. Now arNb'=

(%) In chain ¢ condition (&) is always true as it can be directly seen by observing
that, given an ideal 8, every translation may be expressed by means of the clementary
translations a Kz (a€8), bnwx (bel).
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=2Nb'=1', then b'e§; therefore be S =b'c § and we finally have b N b'=
=zefl, as 8 is an ideal.
Thus Proposition 3 is proved.

At last we give another example in order to illustrate the fact that lattices
in which Proposition 3 is not true exist. We consider the modular lattice Lis
which is obtained from the previously considered I by attaching below a
new element, the O (thus now we call a, M a, N a, the element which covers
it. The translations z\U a,, #U a, do not leave the principal ideal [0, a,]
invariant, so the derived translation (z\U a,) N (U a3), which maps O on
@ N a; N &g, also maps a, on I¢[0, a;] ([0, a,] is not a normal subset). On
the other hand, every translation ' such that O’ = O can be expressed as
intersections, from which follows [0, a,]7'C [0, a,] as [0, a,] is an ideal:
therefore, in the present example, if we call § the ideal [0, a,], the condition
(07'= 0 =87'cS8) does not imply (Oze S =8vc8).
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Summary

Within a framework of general algebra we give here a necessary and sufficient condi-
tion for the existence of congruences. Thus we investigate some existence properties of
congruences in general algebrae with lattice operations and we apply the general proposi-
tion to a wide class of these algebrae.

Sommario

In un coniesto di algebra universale si enuncia wna condizione necessaria e sufficiente
per Uesistenza di congruenze. Di conseguenza si esaminano aleune proprietd della esistenza
di congruenze in algebre generali con operazioni di reticolo e si applica la proposizione
generale ad una ampia classe di tali algebre.



