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LAMBERTO CESARI (¥)

A Boundary Value Problem
for Quasi Linear Hyperbolic Systems. (**)

Ad AnTONIO MAMBRIANI per il suo 750 compleanno

1. - Introduction.

In the present paper we take into consideration the following canonic form
of quasilinear hyperbolic systems

(1.1) 07,0 + z 0:x(®, Y, ) 02;/0y, = fi(®, ¥, 2) t=1,..,m,

k=1
2@ Y) = (B1y -y Bm) s Y= (Y1, -y Yr) »
in a slab D, =I,x B, I,=[x|0<w<a]. Instead of usual CAucHY data at

o =0, we shall take into consideration here more general types of boundary
data (I, II, IIT below).

1. For instance, we may assume that certain functions y.(y), y€ B, i =
=1,..,m, and an integer m', 0 <m'<m, are assigned, and we may request
that

20, ¥) = vi(y) , i=1,..,m, ycEr,
zia, ) = pdy) , i=m'+1,..,m, yeBr.

" For m'=m (as well ag for m'= 0) we have the usual CAUCHY problem.

R
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II. More generally, we may assume that certain numbers a;, 0<a;<a,
and functions y,(y), y€ B, ¢ = 1, ..., m, are assigned, and we may request that

alan, ) =py),  yelr, i=1,..,m.

III. In a more general setting, we may assume that certain numbers a;,
0<a;<a, functions p,(y), yebr, i=1,..,m, and an mxm matrix [b;,(y),
i, j=1,..,m], ye B, are assigned, and we may request that

zb,, (a:, ) = pily)-, Yye£, i=1,..,m

J=1

If [b,,] is the identity matrix, then this boundary condition III reduces to II.
If furthermore, a; =0 for i=1,...,m/, a;=a for i=m'+1,..,m, 0<m’'<
<m, then we have problem I.

In the present paper we prove a theorem of existence, uniqueness and
continuous dependence on the data for the hyperbolic system (1.1) with gen-
eral boundary conditions III, for matrices [b;;] whose main diagonal [b,,
=1, ..., m] is dominant. This certainly includes both problems I and IT as
well as the CAUcHY problem, for all of which the matrix [b,] is the identity
matrix.

An mxXm matrix [b;] is usually said to have dominant main diagonal if

2 1bul<|bul, i=1,...,m. It is easier for us to assume simply that
P

bii(y)=6ii+5ii(y) ’ hij=1,..,m, ye k",

Wlth 6",;'——':1, (S,;j= 0 fOI’ i?‘&j, a,nd tha:t

S1buly)|<o<1, i=1,..,m, yeBr,

i=i.

where ¢ is a fixed number, 0<o<(1. Thus, when [b,] is the identity matrix
as in problems I and II and the CAUCHY problem, all b,(y)=0, i,j =1, ..., m,
and o= 0.

Our existence theorem reduces to a well known existence theorem [2] for
the CaucHY problem.

Since we obtain the solution as the fixed pomt of transformations which
are contractions in the uniform- topology, the usual iterative scheme is uni-
formly convergent to the unique solution. ;
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In 2 we give a new proof of the existence theorem for the CAUCHY problem,
proof based on BawacH's fixed point theorem. In 3 we prove the existence
theorema for boundary conditions III (thus, including boundary conditions I
and II). The proof is also based on BANACH’s fixed point theorem, and the
precise estimates obtained in 2. In 4 we give a new proof of a chain rule dif-
ferentiation statement used in 2. ‘

Added in proof. A bibliography on the subject and further work are
presented in the paper: L. CES ARI, A boundary value problem for quasi-
linear hyperbolic systems in the Schawder canonic form, Annali Scuola Nor-
male Sup. Pisa, Ser. 4, Vol. 1, pp. 311-358, (1974).

2. - The existence theorem for the Cauchy problem.

We denote by & a scalar, by y an r-vector ¥y = (¥, ..., ¥,), and by 2 an
m-vector 2= (21, ..., 2n). We take in B and E™ the norms |y|= max; |y:/,
and z = max, |#;/. :

We consider hyperbolic systems of the canonic form

(2.1) 02:(0m + . 0u(@y y, #) 02:[ Oy = fulw, 9y 2), i =1, ..., m, (%, y) €D,
k=1

with CAucHY data

(2.2) 2:(0, ¥) = @y) , t=1,..,m, ye kb,

where 2(@, ¥) = (81, <oy #n)y ¥ = (Y1, -, ¥). We seek existence and uniqueness
of the solution z{z, ¥) in an infinite slab

D,=I,xE=[(z,y)|0<z<a,yc B ]cE*, I,=[zl0<w<a].

Theorem I. (An ewistence theorem for the Cawchy problem). Let m(x),
WMz, Uz), 0<w<a,, be nonnegative functions, m, h, 1€ L0, a,). Let 4, w, Q
be given numbers, 0 < o < Q, and let Q also denote the interval [— Q, 2]™
n B,

Let 0u®, Y, 2), 1:(&, Yy 2), L =19, ..., m, k=1, ..., 7, be given functions defined
on Doy x 2, all measurable in % for every (y,z), and continuous n (Y, =2) for
every m, such that, for all (z, ¥, 2), (#,9,2) €D x Q2 and i=1,...,m, k=1, ..., 7,
we have

(2-3) IQik(w? Y, z) ! <m<w) b lfi(w7 Y, z)[<h(m) ’
{2.4) ‘Qik(w7 Yy 2) — 0l @y Ty E)!<Z(m)[|y——z7f ~[—|z-—5[] ’
{2.5) lfi(w7 ¥y ) — 1@ ¥, 5)|<l(w)ﬂy~m ‘]f“z”‘gl] .
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Let ¢(y) = (@1y ...y Pu)y Y€ B, be given functions defined in B such that, for
all y, yeBr, and i=1, ..., m, we have

(2.6) lpdy) <o, lpy) — @) |<A]y— 7] .

Then, there is a number a, 0<<a<da,, and continuous funclions &(x, y) =
= (21y -es 2n)y (@, ¥) € Do, absolutely continuous in x for every y, wuniformly
Lipschitzian in y for every z, satisfying

2.7 — <z lr,y)< 2, (@, y)eDy, i=1,..,m,

satisfying (2.1) a.e. in D,, and (2.2) everywhere in . This solution 2 is unique
and depends continuously on ¢ (in the classes 4y, 'y to be stated im the proof).

Proof. The proof is divided into parts (a), ..., (e).

a

(a) Choice of constants. For every a, 0<a<a,, let M, fm ydey, Hy =
-—_fh(oc ) dee, L, fl o) de. Let us choose constants p, @, k w1th 0<p<l,

Q > 1+p4,0 < k<1, and let us take a, 0 < a<a,, sufficiently small so that
(2.8) o+ H,<2, L(1+Q)<k,
(2.9) Ll+p)A+Q<p,. @Q+p)(4+L1+Q)<@,
(2.10) Lo(1 + MA + L1 + Q) <1
with 1, » denoting the constants, 1>1, 0 <» <1,
A=(1—La+Q)Y,  v=Lol+4 M+ L1 +¢Q)) .
(b) The classes Ay and 2,. We denote by D, and 4, the regions

D, =1, XE =[(wy)|0<z<a,ycE]c B,

Ao =TI, XL X B =[(& a,9)|0<é<a, 0<v<a, yc Br|c Brte,
Let o7, be the set of all systems

(2.11) g=1[gal52,9),i=1,...,m k= L.yl



[5] A BOUNDARY VALUE PROBLEM... 111
of continuous functions g, in A, satisfying the following econditions

(2.12) Gul®; @, Y) = Y for all (z,y)€D.,
; :
(2.13) [9::l&5 %, 9) — gul&s @, 9) | < lgm(cx) da] ,

(2.14) lgal€s @y 9) — gal€s @, 9) — Y + Tu| <P |y — T
for all (57 X, Y)s (gy z, ), (57 {B?g)EAu'

Thus, each function ¢, is absolutely continuous in & for every (w,y), and we
have

i 0g:(&; =, y)/a‘§[<m(5) s
a.e in d,, i1=1,..,m, k=1,..,7. For every i=1,...,m, we denote by
gi{&; @, y) the r-vector gi(&; @, y) = (gu, k=1, ..., 7). We shall denote by £,
the set of all systems
h=T[hg&;2,9),t=1,...,mEk=1,..,7],
with ke = gal€; @, ¥) — 4, (&2, 9) € Aoy g=1[ga] €A o. Thus, if K= [hy,
k=1,..,7], we have k,=g.&; #,9)—v, & @,9) €., g=[gal€A,. Then

relations (2.12), (2.14) become

halw; @, y) =0 for all (z,9)ed,,
. 3
[hal€; @, y) — ha(E5 @, 9)| < Ig m(e) dot

[hanl&; @, y) — halé; @, §) |[<p [y —F |
for all (&; @, ¥), (§; @, 9), (5 @, §) € 4a.
Thus, for (&; @, y) € 4, we have
[ha(&; @, y) | = [hale; @, ) + (Rl @, ¥) — hale; @, 9)] |< Mo,

that is, the functions %, are uniformly bounded in 4,. Also

(2.15)  |hi(€; @, y) — hal&; 2, §) | = Maxe | hal&; @, y) — hal&s 2, )| <p |y — F].
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Finally, for the r-vector functions g:(&; @, y) we also have
gi@; 2, y) =y
(2.16) 9a(&5 @, 9) — gal&s 2, ) | <A +2) [y —F |,
|9:65 @, 9) — 6465 2, §) [< L+ ) [y — 7|

Note that o7, is a subset of the BANACH space (0(d,) N L (4.))™ with norm
|7 = max; |&] , By ={hg, k=1,..,7],

Vol = masy Rl , ol = Supg, [Balé; 2, 9)1.
We also consider the set 27, of all systems

(2.17) z2=[2x,9), i =1, ..., m]
of continuous bounded functions z; in D, satisfying the following conditions
(2.18) — <z, y)< 2,
(2.19) 2@, ¥) — 2o, ) |[<Q@ |y —F |,
for all (z, y), (@, §)eD,, t=1, , m. Thus, we have also

|2(z, ) |< 2, |2, y) — (2, §) |<Q |y — 7 |

for all (w,y), (2, J) € D,. Here ', is a subset of the Banach space (C(D.) N
N L,(D,))™ with norm

o]l = max; |z , l2:]] = Sups, |2, 9)|-
(¢) The transformation T.. For every fixed ze 4y, let us consider the

transformation 7, defined on %, say G =1T.9, g€X, or [gu] —[Gul, by
taking

Gulé; @, ) = yk—ff Qik(‘x, Gilo; z, y), 2(e, Gilocs Ly y))) de,

& my)ed,=I,xI, B, i=1,...,m, k=1,..,7.
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Note that the functions G, are obviously continuous, and that

(2.21) Gulw; €, y) = Y for all (2, y)el X E";
, _ &
(2.22) |Gal&; @, ) — GalE; @, )] < Lfm(oc) der|;

[ l Gl 2,9y — Gal&s 2, 4) — Y+ ??kl

x

=< |”Qik(“7 61;(055 @, ), 2o, Gloe; @, .7/))) -
&

(2.23) 3 — oulo, Giles @, ), 2oty gilots @, 7)) |dee| =

@

< Uon (14 ) sl 2, ) — Fales @, §) [dae<
3

< L1+ )1+ Q) y—7F| <ply—7|

113

for all (&; @, 9), (&;2,%), (3@ ) edy, i=1,...,my k=1, ..,7. We have used

here inequalities (2.3), (2.4), (2.16), (2.19) and (2.9).

By comparison of (2.21), (2.22), (2.23) with (2.12), (2.13), (2.14) we con-
clude that G = T.¢ belongs to #,: In other words, for every ze€.f,, the
transformation T, defined above is a map T,: oy —>A,. Considering the dif-
ferences hi = gu— ¥z, We may well think of T, as a map T,: & o—#, with
7 a subset of a BANACH space. Let us prove that 7',: 57, — % is a con-
traction. Indeed, if ¢,9'€eA, G=1T.9, @=1T.¢, and b, &', H, H' are the

corresponding elements in oy, then

| Hi— Hy | < lfl@z‘k(“y Giles @, 9), 2o, Galo; @, 9)))i—
— 0ar {0, G5 @, Y), 2(e Gile; @, 9))) |dec| <
= U [Giles @, ) = iler ) |+
+ 2o, Galors @, y) — 2(e, Glo; @, )} [ ] doe <
< La(1 4 Q) sup 4, | Filet; @, y) — Gilos @, 9) [ =
= L1+ Q) supg, | hila; @, y) — hulo; @, y) | =

< L1+ Q)|h;— by .
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By the definition of norm || we obtain, by force of (2.8),
|H— H'| < L1+ Q)h— W] <k|h— ],

where k< 1. Thus, for every ze2,, the map 7',: A4, — 4, is a contraction
of constant k<<1.

We conclude that 7'.: #y— A, has a fixed point he 7, 0, and the corre-
sponding element ge i, is a fixed point of the transformation T, : Ay — 4.
‘We shall denote this fixed element by g = g[z]e, or g(&; 2, ¥) = [gu, t =
=1, ..,m k=1,..,7], and g[z] satisfies the integral equations

(2.24) gal&s @, y) = yYp— Ej‘ Qik(‘xy ?i(“; 2, ), #(et, 51‘(“5 &z, 7/))) de s
k=1,...,r,i=1,...,m, (& z,y)ed,.

Note that each component g,.(&; 2, ¥) of the fixed element g= T,¢ is cer-
tainly an absolute continuous function in & for every (,y), is Lipschitzian
in y of constant 1+ p for every (&, #), and satisfies

!agik(f§ z, y)[0& |<m(§) ’

& wyy)ed, x I, x B, (ae), i=1,...,m, k=1,...,7r.

Moreover, for every i=1, .., m, the r-vector function ¢,&; «,y)= (gu,
k=1,...,r), thought of as a function of & is a Carathéodory solution of the
system of ordinary differential equations

(2.25) Agu(&; @, 9)]AE = pulE, §4&; 2, 9), 2§, §i(&; 2, 1)) , 0<E<a, (a.e.),
(2.26) Jal; 2, ¥) = Y EF=1,..,7r.

Let us prove that each component g¢;.(&; 2, y) of the fixed element g[z] is
absolutely continuous in « for every (£, y). Indeed, for any two (&;=,y),
(&5 %, 94)e d,, we have

1985 2, ¥} — ga(&; Z, )=

= l j Qil:(“y gi(“; @, Y), #(e, yi(“; X5 ?/))) doe—
&

(2.27) 5 E: - _ - _

—Ef@m(a, Giles B, ), 2(a, Gilo; T, 9))) der| <

<| § () dec] 4| jua)uw)m(a; @, ) — §iler; T, 9) | dec .
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Since for every », ¥, ¥y and ¢ fixed,
6 = max, max [ |§&; @, y) — §&; F, v) |, 0<é<a],

is certainly attained for some % and some & (§ depends on #, Z, ¥, ©), we derive
from (2.27) that ‘

5= | fmle)da] + L1+ Q)8

or

z

lga(&; @, y) — gul&5 &, 9) | < (1 — La(1 4 @) 2] [ m(ex) det]

0:.—:§<;a, 7{,:1,...,7'.

This proves that each ¢,[#](¢; #, ¥) is an absolutely continuous function of &
for every (£, y) with

109 4[21(8;5 @, 9)[0w |< (1 — Lo(1 + @) Imz) = Im(z) ,
(a.e), t=1,...,m, k=1,..,7

Because of (2.4) and (2.19) we know that g&; z,y) is the unique solu-
tion of problem (2.25), (2.26). Thus, g; satisfies the groupal property

985 & 985 2, y) = G5 2, ) 0<&, &<a.

For &, &, z, y replaced by &, z, 0, , or in particular by 0, z, 0, 1, we have
(2.28) 7:(&; @, gilw; 0,m)) = g:{&; 0, 1) ,
(2.29) 7:(0; @, §w; 0,m)) = g(0; 0,7) =7.
Thus, for y = §{; 0,7), the symmetric relations hold
(2.30) y=gdz; 0,m),  n=g0;29).

For any fixed 2z, and zel,, these relations represent a 1 — 1 trans-
formati(ln of the y-spacevE’ into the 7-space Er. Indeed, if 4, = g:(x; 0, ;) =
=9+ hol@; 0, M)y Yo= gu(®@; 0, 72) = 1; + hi(w; 0, 1,), then

[I‘/l" Y |= ["71“ 12+ (ﬁi(m; 0, 1) — \ﬁi(w; 0, 7,) l y
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and hence

(T—p '771"772 <l?/1"‘?/2 < (1 ‘{‘p)!"h“"']z];

where 0<<p<1. Analogously, we could prove that

<@ +2)[y— ¥ |-

A=) h— . |<|m— 72
By adding equation x==2 to relations (2.30), we obtain a 1 —1 transforma-
tion of the slab I, X E" of the wy-space E~*1 onto the slab I,xE" of the wy-
space Bt

Finally, we consider the operation z-—g[z], or 2, —2,, mapping each
element ze ., into the corresponding element g= g[z]€#,. By taking as
usual g; =1y —{—Tli, we have a transformation z— h[2], or ), —",, mapping
each element z e .4, into the fixed point h="T,h, or k[z], of the transforma-
tion 7',. Let us prove that 2z — R[z] is a continuous map.

To this effect, let #, 2’ € ',, and let us denote by h, #' the corresponding
elements in o, or fixed points & = Tz,h, W =T,n'. From (2.24) we derive now

[ (s @, y) — h:;(gy z,Y) l = léfx[gik(ay 61‘(“3 @, ), #(et, Galo; Ty 1 ))> -
— (o, Belos @, ), &' (¢, Gilees @, 9)))] dex| < lﬁ(“)((1+ Qb —1'| + [z —2']) d&.

Hence,
|h— 1| <Ll +Q)h— W] + Lijz— 2],

where L,(1+ @) <<1, and this yields
[h— 1| <(1— Lol + Q) 2L,z — 2| = ALz —2| .
It is correct to write this relation in the form
(2.31) 19— g'| <ALuJjz—2'] .
(d) The transformation T;: Here z denotes any element of 2, and
g = glz] €A, the unique fixed element g = 7,94, of the transformation T,.
Let # denote the class of all functions g(y) = (py, ..., @u), ¥ B, such

that, for all y, ye B" and 4= 1, ..., m, we have

(2.32) o) <o, lody)— o) <A ly—7]|.
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For every pes let us consider the set ¢, of all systems z(wz, y) =
= (%4, ..., 2,,) of the class X, satisfying the conditions

(2.33) 2,0, ¥) = @ly), yelr, i=1,..,m.
The class 2",, is not empty. Indeed, the function z(z, ¥) = (@u(¥); .-, Pu(¥))-

O<z<ap, ye k&, is of class A, since w<Q, A<Q, and 2 is of class H,.
Let us consider the transformation T;,‘ or z->Z, defined by

x ~

(2.34) Zfz,y)= (pi(\g,i((n ! )) + ffz(ﬂ) 9:85 =, y), 2(B, g:B; @, ?/))) g,
0
(w,yyeD,, +i=1,...,m,
where g == g[2] is the element g= T.geX,, or g={ga,i=1,...,m, k=1, ..., 7],
we have determined in part (c), and g(&; @, ¥) = [gu, k=1, ..., 7], (£, @, 9) €
el , xI, xE".
We have now, by relations (2.16),
Z0,y) = ¢i(§i(03 0, ’!/)) =y}, Yy EE’”, i=1, ey My

and thus the functions Z, satisfy relations (2.33). Also, because of (2.3), (2.8),
(2.32), we have

1Zw, 9)] ~o-+[MB)AB “ o+ H, =02 .

and thus the functions Z, satisfy relations (2.18). Finally, by foree of (2.5),
(2.9), (2.16), (2.19), (2.32), (2.34) we have

[Zda,y)— Zio, )| << |@dF0; 2, ¥)) — 0§05 2, §)) |+

-+

Hi(ﬂa ?i(Ig; z,Y), 2(f, §i(ﬂ; &, y})) - fi{ﬂs 61(57 z, ¥}, 2(p, 51’(/& @, g))) ]dﬂ <

QL_.H

2 A1gA0;5 2. y) — §:0; », 7) | +jl(/3)[ls}i(/3; z,y)—gdBi e, 9| +
-+ lz<I3’ ?ji(ﬁ; &y 3 )) _z/ﬂ’: }71(/?7 v, g)) ”dﬂ":
(14 p) A+ L1+ Q) |y—F| <Qly—7|

for all (,y), (%, )€ D,, i =1, ..., m. Thus, the functions Z, satisfy also rela-

tions (2.19), and we have proved that T: maps %, into A,.
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Let us prove that T: is a contraction. Let 2,2’ e, and Z =Tz,
Z' == T;z’. With obvious notations we have

|Z:— Z;]= 9§05 @, 9)) — @(§:(0; 2, 1) [+

+ ofxlff(ﬂ, G:Bs 2, y), 2B, G5 @, ) — (B, 5:(B5 @, 2, 2" (B, §u(B5 =, ) [Af <
<A~ G+ [UBNQ + @IG— Tl + le—=1) 4p =

(A4 L+ @) gi— gl + Lafz— 2] -

Using (2.10), (2.31) we have, for all 2, 2'e X,

12— 2| = | Tpy2— T, 2| <Lu(1 + MA + L1+ Q) |z — 2] ,

where ¥ = L (1 -+ A4 + L1+ Q) <1.

We have proved that T7: 7" l',p - 1, 18 @ contraction. By BANACH's fixed
point theorem, there is an element ze ", , with z = T;z, and we denote this
element by z=z2[p]. For z=12¢[p], and corresponding element g = g[z]eX
the following integral equations hold:

g5 2, Y) = Y — é[ Qik(“y Gilo; @, ), 2(ex, §ilo; @, y))) dec
Ea,pyel, xI, B, k=1,..,r,i=1,...,m,

2y y) = @dgud0; @, ) + Effi(ﬁ, giBs ), 2(B; §48; @, u)) 4B,

(yel,xb", i=1,...,m,

zz(O,?/) 2991(?/)- :leEr7 II’:ly)'m’

Let us prove that, for the fixed element z = T;zeg% 19y and every y € Br,
the functions z,z,y) are absolutely continuous in 2. Indeed, for all (z,y),
@, yyel,XxE =D, and i =1, ..., m, we have

[2:(@, y) — 2:{F, y) | < ,‘Pi{.zji(O; @, Y )) - (]9i(:(ji(0; z, 'J/)) [+] f k(B Af| +

“+ flfi(ﬁy 3B =, 4), 2(B; GB; w,y))) — 1B, §:(B3 T> ), 2(B;5 §ulB; T, ) AP <=

<A1 — L1+ @) | fmlor) dec |+ [ (o) dox | =

= | [ [(A+Lu(1 + @)) 2m{o)+h(e)] dot] .

Be—p
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This proves that z;(, ) is absolutely continuous in @ with
|0z (w, y) [0z |< (A + L1 + Q)) dm(z) + () , O<e<a (a.0.).

By taking y = g.(z; 0, %) in (2.35) we have, by (2.28),

(2.36)  z(w, Gilee; 0, 1)) = pu(n) +ofxfi(ﬂ, Gi(B; 0,m), 2(B, §:«B; 0,m))) 4B,
2:(0, 1) = @) .

Note that, for every n € " the first member of (2.36) is absolutely continuous
in # as the superposition of Lipschitzian and absolutely continuous functions.
From (4.i1) we derive that the relations

dz,(w, g(z; 0, n)[dw = 02,/0@ + D1 (0g:/02)(02:/0ys) i=1,..,m,

hold a.e. in D,. By differentiation of (2.36), and using relations (2.25) and
(2.35), we derive

az;(w, \g’i(w; 0, 7]))/87’ +
+ Zk Qik(@ 51’(5175 0, 1), #(x, 5:‘(505 0, 77))) £8zi(m7 gi(fm 0, 77))/3%] =
:fi(w1 g+=; 0, 1), 2@, gi(@; 0, 77))) , O<e<a, i=1,..,m.

In other words, these relations hold a.e. in the slab D, of the zn-space. By
taking 4 = g.(x; 0, %), and using the properties of the transformation (2.30),
we obtain

(2-37) azi(ma y)/a@ + zk‘ Qik(w7 ?/) z(ma ?/)) azi(wy (l/)/ajl/;, = fi(wa ?/’ z(m’ ?/)) b)
(x,y)eD,, i=1,...,m,

and these relations hold a.e. in the slab D, of the zy-space. The existence of
a unique element z e, for every ¢ €., satistying (2.1), (2.2) as stated in
Theorem I, is thereby proved.

(e) The solution z depends continuously on the initial data ¢. For every
pes we have determined an element z = z{p]€X",. Let us prove that the
map @ —2[p], or S A, so defined is continuous. Indeed, if ¢, '€, if
2, #' are the corresponding elements, z = T;z, 2= T;, 2’y and g=g[z], ¢'=
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= g[z'] the corresponding elements in %", then we have, by using (2.5), (2.6).
(2.10), (2.19), (2.31), (2.35),

l2i@, 9) — (@, y) | = lp:{F0; @, ) — 9,(§:(0; @, y)) +
+ Of[fi(ﬁ, B @, ), #(B5 §ulB5 @, 9))) —
—14B: 5:B5 @, 9}, ' (B, §i(B; =, )] 4B <
<lp—9'l+Alg—g'| +[UPLA+Qlg—g'| + == []dp<
<le—@' |+ (A4 L@ + D) g — 'l + Lallz —2'| <

<le—¢' | + Ll + AA+ L1+ Q) |z — '],

where v = L,(1 + A4 + L, + @))) < 1. Thus,

le— 2] <[1— Lu(l + A4 + L@ + QNI e — ']

(2.38) le—2" <@ =& o —o' .
Theorem I is thereby proved.

Remark 1. The vector functions g.(&; 2, ¥), 0<é<a, i =1, ..., m, with
9:(w; @, y) = y, are the m real characteristic lines through the point (@, y)e D,
correspouding to the solution z(z, y) = (21, ..., Zm)-

Remark 2. If the function ¢(y) = (@i, ..., @.) is given only in an interval

B =TT by, bux] C Bry by, << by, finite, and ¢ satisfies (2.6) in B, then we can
kw1l
well extend ¢ to all of I in such a way to satisfy (2.6) in all of Er, and then

we can determine a number a> 0 and the solution 2(z, y) = (2, ..., 2,) in the
infinite slab D, together with the corresponding characteristic lines g,. We
can even arrange that ¢ has compact support in " and then z too will have
compact support in D,. Obviously z and ¢ depend on the chosen extension.
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Nevertheless, ¢ and g are uniquely determined by the data ¢ on B in the finite
domain R defined by

I<e<a, by + M) <y <bo,— M(z), k=1,..,r,
where @ is the maximum of the numbers @< a with 2M (@) < bor— by, k=1,..., 1,

and M(x)=[m(«)de, 0<w<a,.
' 0

Remark 3. Note that, if the functions gu(®, ¥, ), (@, ¥, #) in Theorem I
are defined in D, x B and satisfy there all relations required in I, then there
is no need to require (2.7), and requirement w - H.< £ in (2.8) can be drop-
ped. Indeed, then in the proof of I we need not require that the functions z;
in the class 2, are bounded by £, and we need not require (2.18). Yet the
corresponding functions z; are bounded in D,, namely [zi|<co 4 H,. Thus,
requirement (2.7) in I can be dropped if the functions g, f: are defined in
D, x E™ and satisty there all other requirements of I.

Remark 4. We have pointed out in the proof of (2.37), that the first
members of such equations are, a.e. in D,, the total derivatives dz(a,
Giw; 0,7m))/dz. There may well be a set of measure zero of points n € £ for
which dz(z, 7:x; 0,m))/dz exists for almost all x, but the first members of
(2.37) do not. This can be seen by the following example with r=m =1,
dzfow + 02/0y = f(z, ), >0, — oo <y < -+ oo, with f(z,y) =y for z<y and
flz, y) = = for y<wz, and 2(0, y) = 0. Its solution is 2(z, y) = oy — 27 2® for
y>w, 2@, y) = 27 1a? for y<a, as one can easily verify. On the half straight
line y = #> 0, 2(x, ®) = 271 «* has derivative dz/dw = x, while 0z/ox and oz/oy
do not exist.

Remark 5. If the functions ¢.(y), ¥ € B, are known to be periodic of

some periods Ty, ..., T, in ¥y, ..., ¥,, and all functions g.(x, ¥, 2), fdw, v, 2)
are also periodic of the same periods in ¥y, ..., ¥, then, under the same hypoth-
eses of I, the solution 2(z, y) = (21, ..., #w) is also periodic of the same periods

in 4y, ..., ¥, To see this one has only to repeat the proof of I taking classes
and 2, made up of functions g(£; =, y) and 2(, y) satisfying all requirements
(2.12), (2.13), (2.14), (2.18), (2.19) and in addition periodic with respect to
Y1, .-y Y of periods Ty, ..., T..

3. - The existence theorem for the boundary value problem.

We consider here hyperbolic systems of the same canonic form (1.1), or

(3.1) az«/am + z Qik(m: Y, 2) azi/ayk =[x, y, 2), (2, y) €D, i=1,..,m,

k=1
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with boundary conditions
(3.2) zbia‘(?/)zi(a'ia ¥) = wiy), yekl , i=1,..,m,
o=y

where p,(y), bi(y) are given funections of y in B" with det [b;;]~ 0, and where
0<ay<a,<...<a, <a are given numbers (between 0 and a). As mentioned
In the Introduction, we assume that the m Xm matrix [b,;] has « dominant »
diagonal terms, and, to simplify notations, we simply assume that

bis(y) = 04+ 51‘:‘(.7/) , hi=1,..,m, yelr,

with d, =1, 6,,=0 for 7=~ j, and that
(3.3) Sbuy) | <o<1, i=1,..,m,
§=1
where o is a fixed number, 0<o<C1. Then, system (3.2) becomes

2@, y) = piy) — zgii(?/) Zi(@:y Y) yel”, i=1,..,m.

=1

In the existence theorem below we state conditions in terms of the ele-
ments g, /iy by, ¥, under which problem (3.1), (3.2) has a solution, and this
solution is unique in a suitable elags.

Theorem II. (An ewistence theorem for the boundary wvalue problem). Let
£2>0, mx), M), z), 0O<z<a,, be as in Theorem I, let conditions (2.3), (2.5)
of Theorem I be satisfied, and let w,, o, 7, A, be constants such that

(3.4) 0<w< @, 0<o<l, 720, 4,>0, w,<@d—0).

Let pi(y)y by(y) = 64 + bu(y), yeBr, 4,j= 1,..., m, be functions defined in B*
suchk that, for all y, je B and i =1, ..., m, we have

(3.5) lpdy) | <o, lpiy) — p@) | < Aoy — 71,
(3.6) zflgii(’!/)l<07 Zilbﬁ(?/)—‘bii(g)l<fl?/_gl .

Then, there is a number a, 0<a<a,, and continuous functions z(w,y) =
= (21, <oy Zm)y (@, Y) € Dy, absolutely continuous in x for every y, uniformly Lip-
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schitzian in y for every ®, satisfying — Q<& (@, y)<L for all (z, y) € Dy,
i=1, ..., m, satisfying (3.1) a.e. in D, and (3.2) everywhere in L.

This element z is unique (in the class which will be stated in the proof)
and depends continuously on .

Proof. Tirst, let us choose constants w, 4 such that

0<we< <<, we< (1— 0w,
O0<cdo<ad, Ayt+ro<(1l—a)d.

We may write the last relation in the form A, + 7w + od < A. Then, let us
choose a number p, 0 <p <1, sufficiently small so that

(8.7) Ao+ 10+ oAl +p)< (1 +p)td,

and let us take a number k, 0 < k<< 1 so that o <k <1. We are now in a
position to apply Theorem I in connection to the constants and A just
now determined. As in Section 2, part (a) of the proof of Theorem I, we use
the numbers p, k already chosen, and we choose a constant § such that
Q> (1 + p)A. Also, as indicated there, for any a, 0 <a<a,, sufficiently small
we denote by A and & the constants

(3.8) A=(1—L1+@)*>1, g = L1+ AA + L1+ Q) <1.

‘We now choose a, 0<a<a,, sufficiently small so that besides the require-
ments stated in Section 2, in particular relations (2.8), (2.10), we also have

wo 4+ oo+ (0 +1)H.<w,

(3.9) lAD + 7(w -+ H,) + oA@ + p) + (0 + 1 L1 + Q)1 + p)<(1 +p)*4,

'=0c+ (c+1)e(l—eg)yt<Cl.

where %' is defined by the last expression.

As in Section 2, parts (b) and (1), we define the classes %, o, and S in
connection with the constants chosen above.

In Section 2, part (d), for every ¢ €.# we have determined a unique ele-
ment 2z € X', satisfying (2.1) and (2.2). We consider now the transformation
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%, or @ = T+, get, or g—=D, o) = (g1, ..., gn), Dy) = (D, ..., D),
defined by

(3.10) (—Di(n) = [@i(gi(o; @iy y))]y=};(ai,0, m, neL, 1=1, ey M,

(3.11) @i(?]’i(m Gy ?/)) = P,(y) "“‘!z Eii(?/)z:‘(@u y)—
=1

— J.xfi(ﬁa yi(ﬂ5 a:, y), 2(f, \(ji(ﬁ;a’iv y))) ag, yelr, i=1,...,m.
[1]

Here 2(@, y) = (21, ..., 24), O 2z =2[p] €A 1,C A1, is the solution of the
CavcrY problem for (3.1) with 2,0, y) = @.(¥), ¥ el, i=1,..,m, and
92, y) = [gu, k=1,...,7,i=1,...,m], or g = g[w]leA,, is the system ¢
relative to 2. Thus, ¢/&; @, ¥) = [gu, k= 1,.,7], ¢=1,..,m, and

( z
gik(é:; &z, .?/) = yk—;gik(ar gi(“; Z, ?/)’ z(“7 gi(‘x; T, :1/))) do *

& @, y)el, X I, X B, k=1,...,¢, i=1,...,m,
(3.12) ‘zi(ma ?/) :(piaii(o; &z, ?/) +J‘f1{ﬂy 5i(ﬁ; @, g/).z{ﬁ, \(;z(ﬂ’ z, ?/))) d/37
[

@y eD,=I,x8B,i=1,..,m,

2:00,9) =a.y), Yyeb , i=1,...,m.
First, we have |2/, y)|<ow -+ H,, (#,9)eD,, i=1,...,m, and hence
[ PG 05 avy ) < [yl |+ 3 buy)zilas, y)+ [MB) 4B
=1 [}
Zwy+ olw-+H)+ Hy <o .

Consequently, we have also

(3.13) | D) |<w, nelr,i=1,..,m.
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Furthermore, we have, for all y,ye ", i=1, ..., m,

([ D:(§:05 a;y ) — @i@i(O; @i ¥)) ' =X
< |wily) — v [+ i wﬁ(y) - 5::(27)] |2(a; ¥} | +
+§I H:{(pz g(o Ch,?/))“(/’:(fl’a(o;06”?7))1+

+ f 118, 585 s, 1), 2(B, (5 @i 1)) —

(3.14) — 148, 9:(B5 sy ), 2(B, §:(B5 ai, 7)) |4B] +

+ (1748, 7485 a2y ), #(6, (B, ey ) —

— [, §:4B5 @i, i), 2(B, GB; @iy )} |AB

Ao+ T(@+ Hy) + oAl 4 p) + oLa(1 4 Q)1 4 p) +

| + L1+ +plly—7] <@+ pyAly—7].

We note here that, if a function F(y), y € B, satisfies |F(y)— F(7)|<
<KI?/—?7|: Y, J € Br, then

(3.18) [ F(gdas, 0, ) — P(filas, 0, 7)) | <
<E|gdas; 0,m) — gulas; 0, 7) | <E(L + p) |7 — 7]
for all #, je .
Now, by force of (2.30), we have
Du(n) = [Pu(905 @15 9))Jombogi0m
and thus, from (3.14) and (3.15) we also have

(3.16) | D) — ui)) | < (1 + p) A + p) | —ij| = A|n— 7|

for all n, €7, i =1, .., m. From (3.13) and (3.16) we see that the trans-
formation T%#*: ¢ — @ defined by (3.10), (3.11) maps  into £,

Let us prove that T%:.# —./ is a contraction. Indeed, if ¢, ¢’ are ele-
ments of £, if #, 2 are the corresponding elements z e 19 ¥ €Ay, and
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= g[z], ¢'= g[z'], ® = T**p, &'= T**¢', then
'I@z-(gAO; Ay ?/)) ;\J.(O ay )yl

< 21 181 L1 995005 acy 1) — 3505 @y ) |+

H (B, GilB5 @iy ), 2(B, GiB5 asr ) —
— 1B, GilB5 @es ), 2'(B, 3(B5 @iy 1)) [4B] +
+ [1B, 5485 aur ), #(8, 7455 @ ) —
— 1B, 9:(B5 @ss ), #'(B, 9:(B5 @iy 1)) [P <
<ollg—¢' |+ Alg—¢'| + L1+ Qg —9g'| + Lalz—2"| ] +

3.17)

[+ Lol A+ @9 — 9" 4 Lafz — 2] .
Also we have
| 2.(9:40; 4, 1) — Pi(G:(0; ary ) | <
<[ D(G:05 as, 1) — PG:(05 @i, ) | + [ | PU(G1(05 as, 1) — Bi(G:(05 s, 9) | <
<| DG(0; as, §) — DUG,(0; ary ) | + Ag—g'| -
By using (2.31), (2.38), (3.9), (3.17) we have now
12— @' <olo—¢'| + (4 + Ll + @) ALuf|z — /]| + Leflz—2'[] +
+ Lol + Q)AL e — 2'|| 4 La|| 20— 2'|| + AAL|e— 2| <
<ollp—¢'| + (6 + DLf1 + A4 + L1 + Q)2 — 2] =
=[lo+ e+ —alle—¢'| = Flo—¢'l,
where k'<c1. Thus, 7**: .7 ->.# is a contraction. By BANAcH’s fixed point
theorem there is an element g€ with ¢ = T**¢.
For this element ¢ = I'**@pe.# and corresponding element z = z[<p] €X 1 C

cot, we derive from (3.11)

Wi{.;ii(o§ @;y fl/ = y,(y) — szi @5y Y)— J?lfz(ﬁy 5:‘(/35 iy :l/),z(/37 gi(lg; @y 2/))) dﬁ

0
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or, by (3.12), also
2lay, y) = pily) — Egii(y)zi(ah Y), yeklr,i=1,...,m.
j=1

The existence of the element 2(z, v), (2, y)e D, stated in Theorem II is
thereby proved and this element is unique in the class ¢, with initial data
200, 9) = @:(y), yelr, i=1,...,m, @= (P, ..., Pu) ESL.

Let us prove that this element z depends continuously on p. Indeed, if
, ¥’ are any two corresponding elements, and ¢, ¢' the corresponding initial
values, then by repeating the argument above with @ =g, @' = ¢, we have

le—e'l<le—v|+Flg—¢l, F¥<1,
and then, by (2.38), also
le—e'l<@—=2yw—v],
le—2 < —e p—¢' | <L —e A —F) " yp—y] -

Theorem II is thereby proved.

4 - Some remarks on differentiation.

The statements (4.i), (4.ii) below are éssentia,lly known. For (4.ii), which
was used in Section 2, a number of references are given in [3]. Nevertheless,
we give here simple proofs for the convenience of the reader.

(a) A Lemma on IL;-convergence.

(4.4). If f(2), fulz), weD, f, fe L,(D), k=1, 2, ..., are functions defined
n a domain D of B, and f, - strongly in L,(D) as k — co, then there are a
functions f(a:)>0, rveD, feLl(D), and a sequence [k,] with k,— oo, such that
[fr,(@) | < f(@) for all s and almost all xe D.

Proof. By replacing f. by fr—7, we see that it is not restrictive to
assume f = 0 in (4.i). Thus, f;, — 0 strongly in L,(D). Hence, for every integer
s=1,2, ..., there is a first index %k,>s such that [|f:,|dz<<27s. Let

D

Plo)=lmPya),  Fuo)=Max[|fu@)], .., |felo)|] -

§—» 0
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Then 0< P (x)< P, (), xeD, and
[F@)do< 3 [|ful@)|do <2724 . F27< 1.
b je=1 D

By B. Levr’s theorem, then FeL(D), [F(z)dz<1, F is finite almost every-
D

where in D, and |f, (2)| < F.(x)<F(x), xe€D. Lemma (4.i) is thereby proved.

(b) A chain rule differentiation Lemma.

(4.ii). Let I=[a, b]x]][a;, blcE™Y, and let 2(z,y), (® y)el, y=
1

= (Y1, +ny Yr)y b€ @ continuous function on I. Let us assume that there is a
constant C=0 and a function p(x)>0, x e [a, b], m € Iya, b1, such that for all
@, ), @ ), (@ 7)el we have

|z(‘”a ,’lj) _z(:'ﬁ, ?/)l < ] J?/u(o‘) d“[ ’ Iz(wy ?/)"‘z(w7 7_”10“1 _"?ﬂ :

Let D be a domain in a n-space B*, and let o(x, n) = (pu(@, ), ..., @.(2, 7)) be
an r-vector function defined in [a, D1X D, and let us assume that each ¢(x,n)
48 continuous in [a, b] XD, has values in [a;, b;], and there is some funciion
my(2) >0, xela,b], m,eLyfa, b], such that for all (z, n), (,n)<[a, b] XD,
i=1, ..., 7, we have

i, ) — 9@ m) | < | [ (e ] -

Then, Z(z, n) = 2(x, p(@, 1)), (@, n) € [a, b]XD, is continuous in [a, b] XD, is
absolutely continuous in x for every n €D, and almost everywhere in [a, b] XD
we have

(4.1) 0Z [0z = o=[0x + i {02/ 0y,) (O 02)

k=1

where the arguments of Z are (v, 1), the arguments in dz/0w, 020y, are (w, p(x, 1)),
and the arguments in Op,/ox are (x, n).

Proof. The continuity of Z(z, n) in [a, b] X D and its absolute continuity
with respect to @ for every n € D are straightforward. To prove (4.1) a.e. in
[a, b1x D, it is enough to prove it locally, nemely, in arbitrary subregions
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(&, B] xDc [a, b]x D, say small enough so that, in each of the » 1 double
inequalities a <& < f<b, a, <@, n)<b; for (¥, n)€[& f1xD, only one = sign
at most may hold. Let us assume, for example, that a<o?<ﬁ <b, a;<
< @@, n) <b;, and hence also a< o< f<h — hy, a; < @i, 7)< b;— ko for (z, n) €
€& f1xD, and some fixed h,>0. For any h, 0<h<h,, let z, denote the
mean value function

(@, y) = k1 fe(§, ) déad, (@, y) e Iy = [a, b— ko] X [T [@:, bi— R0l ,
1

where 2= (A, .., 4;), dA=dJ, ... d4,, and [ ranges over all (§ 1) with z<

<é<w+ by, yi<h<y;+h, i=1,..,7. We know from ([6], p. 254 (M5),

p. 256 (M15,17); [1], pp. 460-468) that 2, is continuously differentiable, and
2, —2 uniformly in I, as h—07,

(4.2) 0%, /0x — 02/0w , 02, /0y, — 02/0y; , E=1,..,r1,

strongly in I,[I,] as h—0",

Moreover, we have
z+h '
(4.3) | 024/ 0 | < ) = 71 | plor) dox, [ 02,/0y, | < C .
Note that, for every ne.D, the relation
(4.4) 820(@, @@, 1)) [0w = BeafB -+ 3 (32429 (Oopuf0)
k=0

holds for almost all # € [&, f], namely, at all those points & where the r deri-
vatives 0p./0®, k=1, ..., 7, exist and are finite. Since both members of (4.4)
are measurable funetions, relation (4.4) holds almost everywhere in [&, B1x D.
Then, for any [«, f]c [&, B, D,c D, from (4.4) by integration, we obtain

(4.5) 1;‘- [zh(/gv (p(ﬁ, 77)) "zh(“: plot, 77))] dn=

n
B *
=11 [azn/aw+kgl(azh/ayk>(a¢,¢/aw>] dnda .

Note that w, —u strongly in L, as h->0", again from ([6], p. 254). Hence,
by force of (4.i), there is a sequence [h], with h,> h, ;> 0, h,—0 a8 §— oo,
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and a fixed function j(x)>0, ue Ly, such that 0< (@) < fai(z) for all s and
almost all . Thus

(4.6) | 02, /0w | < ji() , | 0/ O

< my(@) , |02, /0y, < C

By foree of (4.2), (4.3), (4.6), and LEBESGUE dominated convergence theorem,
from (4.5) we derive now

(4.7) Df [z(ﬂ P(B, 77)) - z(‘x) (ot 77))] dn =

=)

'R:_..a_ch

[02)02 + Er (02/0y:)(Cqi/ox)] dny da .
=1

Note that, for every [«, f]c [&, ], relation (4.7) holds for all D c D. Hence,
for every [«, B]c [&, B], the relation ‘

B r
(4.8 2(B, ¢(B, 1)) — 2oty ploe, m)) = [ [2o) 0w+ 1(82/87 1) (0w 0} ] A

o k=

holds for almost all ne D. Conceiving (x, f) as variables in the domain
R=1{(e, B)la<a<B<f], we conclude that for every («, )€ R, (4.8) holds
for almost all # e ). Since both members of (4.8) are measurable in RxD,
we conclude that (4.8) holds a.e. in Rx.D. Thus, there is a set H,c D,
|H,| =0, such that, for every e D — H,, (4.8) holds for almost all («, §) € R.
There is also a set Hyc D, |H,| =0, such that, for ye D — H,, the function
in the integral in (4.8) is L-integrable. Then, for neD — (H, U H,), relation
(4.8) actually holds for all (o, §) e B. By differentiation, we see that, for all
neD— (H, U H,), relation

(4.9) o0z(=, p(z, n))|ox = oz[cw + i (02/0y,.)(0p: 0x)

k=1

holds for almost all # € [&, f]. Thus, (4.9) holds a.e. in [& fIxD. We have
proved that (4.1) holds a.e. in [a, b] xXD. Statement (4.ii) is thereby proved.

Remark. We have proved (4.1) a.e. in [a, b] X D. Thus, for almost all
7 € D, relation (4.1) certainly holds for almost all @ € {a, b]. It may well occur
that, for some n €D (at most a set of measure zero in D), relation (4.1) does
not hold for almost all # € [a, b]. This occurrence is exhibited by the following
example. Taker =1, >0, —co <y < + oo, and 2z(z, y) = oy — 2712 for y >,
2w, y) =271x? for y<o. Let g, n) =7+ o for >0, — co << + oo, and
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note that Z(z, n) = 2(x, gz, 7)) = nw + 27 a* for >0; = 271w for n<0. For

=0, we have Z(z, 0) =27'2* and dZ(z, 0)/de = 2. On the other hand, for
y = x> 0, neither partial derivative ¢z/ca, dz/oy exists, and the second member
of (4.9) is not defined.
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