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in Scalar-Product Spaces. (*%)
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1. - Intreduction.

In one previous work [1] we investigated a mathematical formalism to
describe the quantum fields at a point. This research led us to consider some
particularly simple algebrae of linear operators in non-complete scalar-product
spaces.

Precisely, we were led to introduce the following definition.

Definition 1. Let D be a scalar product space. We say that a linear
operator A defined on D has an adjoint A* in D whenever there exists a linear
operator A* defined on D such thai

Ve,peD  (dgly)= (p|4¥y).

We call O, the set of the linear operators that are defined on D and have an adjoint
wn D; we call B, the subset of C, consisting of the bounded operators.

We endow C, (and B,) with the D-weak topology, determined by the set of
SEMINOTrms

(4| (dg]9) | |p e D).

(*) Indivizzo degli Autori: Istituto di Fisiea dell’Universitdh di Lecce, ora allo
Istituto di Matematica dell’Universith di Parma; Istituto di Fisiea dell’Univer-
sitdh, di Palermo; Laboratorio di Cibernetica del C.N.R., Arco Felice, Napoli.

(*¥¥) This work has been performed in part within the I.N.F.N. and in part within
the Gruppo Nazionale per la Fisica Matematica del C.N.R. — Ricevuto: 1-1I1-1973.
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Then we remarked that the WicHTMAN quantum fields (!) may be defined
as C,-valued distributions on the space-time satisfying some axioms and we
proved that actually, as a consequence of some of the axioms, such fields « are »
functions on the space-time with values in the sequential completion 0, of €,
(which in general is no more a space of operators).

So we were led to consider, besides B, and C,, their sequential complet-
ions B, and C,.

Let ug further introduce the definition:

Definition 2. Let D be @ scalar product space. We call D, the space D
endowed with the D-weak topology, determined by the set of seminorms:
{o— (olv)||veD}. We call £(D,) the space of the linear continuous operators
of D, endowed with the D-weak topology (see Definition 1).

Whenever D is complete, the spaces B,, 0,,5,, C,, £(D,) coincide,
because:

B,= Z(Dy) as a known consequence of the Riusz theorem together with
the uniform boundedness theorem

C,= B, due to the closed graph theorem
B =B, due to the uniform boundedness theorem.

These spaces do actually coincide, for complete D, with the well known space
Z(H) of the bounded operators of the HILBERT space, endowed with the weak
topology.

If D is not complete, in general the above equalities do not hold (2).

In this paper we study some easy properties of the above mentioned
spaces, and also of the completions B, and €,. In particular we find that
C,= Z(Dy), Bl,z C’D and §D= CD, thig latter statement being true under the
assumption of separable D.

The fact is important, that B, and C, have a structure of topological
k-algebrae (°). With this structure €, appears, from some points of view,
as the most natural algebra of unbounded operators which reduces to Z(H)
when D is complete (*). Moreover, for any HILBERT space H and for any

(*) See for instance Ref. [10].

(%) In the appendix we give a simple example of an element of 5, which does not
represent any operator.

(*) The algebra O, has also meanwhile been considered by G. LassNer [2]. We
thank the author for having sent us his paper before publication.

(Y) See also Ref. [7] page 88.
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x-algebra &7 of linear operators of H in which the sum and the product are
defined as it is usually done for unbounded operators, there exists a dense
linear manifold D of H such that & is a s-subalgebra of C,.

2. - The topological : - algebrae B, and (.

With reference to Definition 1 we have firstly:

Theorem 1. The elements of O, are closed operators in D (°).

In fact in any scalar product space the adjoint of every operator with a
dense domain is a closed operator (°). According to Definition 1 any operator A
of €, is the adjoint of the operator 4*, hence it is closed.

In our work [1] we had already remarked the following proposition, whose
proof is straightforward.

Theorem 2. For any scalar product space D, C, (endowed with the natural
operations) is a topological *-algebra in the following sense:

a) O, is an algebra with involution

b) O, is a locally conver Hausdorff-space
c) the product is separately continuous

d) the involution is continuous.

B, is a topological x-subalgebra of C,.

The algebrae O, are of interest with reference to a remarkably general type
of algebrae of unbounded operators of the HILBERT space. In this connection
we recall that working with sets of unbounded operators usually requires much
care concerning the domains of definition. In particular when dealing with
algebrae of operators, generalizations of the definitions of sum and product
sometimes are required (*). However, if we preserve the usual meaning for
the operations of sum and product of operators, the following statement holds.

(°) Of course C, does not generally contain every closed linear operator in D.
as well as B, does not generally contain every bounded linear operator in D.

(°) The usual proof (see for instance Ref. [5] Ch. I § 5 n° 9) does not use the com-
pleteness of the space.

(") See for instance Ref.[6] Ch. IX § 128.
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Theorem 3. Let H be an Hilbert space and let o7 be any x-algebra of
(not necessarily bounded) demsely definite linear operators of H, such that the
sum and the product are defined as # is usually done for umbounded operators
and such that the x-operation transforms any operator of < into a restriction of
its adjoint. Then there exists a dense linear manyfold D of H such that o7 is
a x-subalgebra of C.

Indeed the requirement that addition has the group properties implies
firstly that all the operators of .7 have the same domain: in fact for any A,
Be o/ we have (D, meaning the domain of 4, etc.)

A+B—B=A = D,,,nD,=D, = D,cD,.

Analogously it may be obtained D, cD,, so that finally for any A4, Be </
D,=D,. Furthermore we have to require that the product of any two
operators of .« be an operator of .7, hence that its domain be D: it follows
immediately that all the operators of ./ must leave D invariant. As a con-
sequence it turns out finally that the sx-operation within o/ coincides with
the adjonction in D, that has been infroduced in Definition 1. So, according
to Definition 1, &« is a sk-subalgebra of C,.

Henece it is just C, that for unbounded s-representations of x-algebrae
takes most naturally the place #(H) holds for bounded :x-representations.
Examples of such unbounded s-representations are met in the theory of the
representations of LiE algebrae as well as in the already mentioned WIGHTMAN
formulation of quantum field theory (4).

With reference to Definition 2 we have

Theorem 4. For any scalar product space D it is (8) C,= FL(D,,) and
the equality is an isomorphism of topological x-algebrae (with separately continuous
product), with respect to the natural operations.

Proof. Let us call D the scalar product space that is the complex con-
jugate of D (°). Let us then consider the spaces D and D as forming a
pairing (*°) with respect to the bilinear functional (¢, v)— ((p |9) that is defined
on DX D by the scalar product of D. This pairing separates points of both D
and D, so that (D,D ) is a dual system with respect to such a bilinear form.
Let further A be any linear operator of D (defined on the whole D). Then a

(%) Hence any element of (0, may be extended by continuity to a linear operator
in the sequential completion D, or even in the completion Dy, .

(?) See Ref. [9], Ch. V, § 1, no 3.

(*°) See Ref.[4], Ch. II, § 6, no 1.
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known proposition (i1) states the equivalence of the following two statements:
1) A is continuous with respect to the weak topology (**) o(D, D) defined
on D by the pairing under consideration.
2) There exists an operator A* of D (defined on the whole D) such that

VoeD VyeD (dp|p)=(p|4d*yp).

Then we remark that the set supporting D is D and, for any operator of D,
linearity with respect to the original structure of D is equivalent to linearity
with respect to the structure of D. We remark further that the o(D, D) weak
topology on D coincides with the D-weak topology of Definition 2.

Then the statement of the theorem follows from the definitions of C,
and Z(D,). :

We remark that the statement @) of Theorem 2 does also immediately
follow from Theorem 4.

3. - The Completions By and 0».

In order to compare the completions B’D and ¢ ', it is convenient to compare
both of them with the algebraic dual (D ® D)* of the algebraic tensor product
of D and its complex conjugate D.

To this purpose we use the following proposition, which collects known
facts concerning weak topologies (*3).

Lemma 1. ILet two vector spaces X and Y form a pairing with respect
to some bilinear functional (z,y)—B(x,y), which is supposed to separate points
of both X and Y. Let us endow X with the weak topology o(X, ¥); let us call Y*
the algebraic dual of Y and let us endow it with the weak topology o(X¥*, ¥).

Then the canonical mapping of X into X*, which transforms any element
of X into the element of Y* y— B(x,y), is imjective, linear and biconitinwous.
Its continuous extension to the completion X of X is an isomorphism of the topol-
ogical vector spaces X ana v*.

Using this Lemma we prove the following proposition.

Lemma 2. Let D be a scalar product space. Let us call D its complex
conjugate (°) and (D ® D)* the algebraic dual of the algebraic tensor product

(1*) See Ref. [4], Ch. II, § 6, n° 4, Prop. 5 and Cor..
(*2) See Ref. [4], Ch. IL, § 6, no 2, Def. 2.
(**) Sec Ref. [4], Chap. II, § 6, no 1 and § 6, n° 9, Prop. 9.
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D @D, endowed with the weak topology (*2) o((D ® D)*, D®D). Then the
@
linear mapping A—F, of C, into (D & Dy* defined by (1)

(12
Vo, peD  FlpQ@y) = (dolyp)

is injective and bicontinuous. Its continuous ewtension to C, (or B,) provides
an tsomorphism of the topological wvector spaces C’D (or B’D) and (D & D)%

Proof. We consider the spaces ¢, (or B,) and D ® D as forming a
pairing (*°) with respect to the bilinear functional (4, ) —B(4, y) defined by

Ve, pyeD Vdel, B4, p@y) = (4p|y).

This pairing separates points of both C, (or B,) and D ®D. If we in fact
assume VyeDQ®D B(4,y)=0, then we have in particular Vo, peD
(Ap|p)=0, hence A= 0, so that the pairing separates points of O, (or B,).

It separates also points of D ®D. Let in fact be ¥=.p;: @y, the p’s
1
and y,’s belonging to D and the ¢,’s being linearly independent. Let us assume
VAeB, B(4,y)=0, that is VAeB, 3, (Adp;|p;)=0. Let us take for any
1

j=1,2 ..n 4;eB, such that for any 1=1,2 ... % A;p;=0,v, (A; may for
instance be choosen as being zero on the orthogonal complement of the set
of the @,’s). Then the assumption, when applied for any j=1,2...n to 4,
implies (v,|p,;)=0, hence u,= 0. So it implies y=0. Hence the pairing sep-
arates points of D @ D.

Then we apply Lemma 1, with X= 0, (or B,) and Y=D ® D.

The weak topology (**) ¢(C,, D ®D) on C, is determined by the set of
seminorms o

{4~ |B(4,y)|lye D ® D};

it is easily seen that this set of seminorms is equivalent to the set of seminorms

{4~ 1B4,9 @v)||p, pyeD} = {4~ |(4d¢|p)||p, p €D},

which defines on €, the D-weak topology of Definition 1, so that the weak
topology o(Cp, D & D) on C, coincides with the D-weak topology. An analog-
ous statement holds for the space B,.

(*) We recall that the set supporting D is D.
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®
The canonical mapping of €, into (D & D)* is the linear mapping 4 —F,

that is defined in the statement to be proved (and its restriction to B, provides
the canonical mapping of B, into (D ® D)*).

Then Lemma 1 states that this mapping is injective and bicontinuous and
its eontinuous extension to OD (or BD) provides an isomorphism of the topol-
ogical vector spaces (7,, (or BD) and (D & D)*.

So the Lemma is proved and the following proposition derives immediately.

Theorem 5. IFor any scalar product space D it is, for the completions,
B,=0,.

We consider another easy consequence of Lemma 2. Let us describe any
operator 4 of C, by means of the sesquilinear form I, on D (¢, p)—
—F (@, p)= (Ap|p). Then the next proposition states that even every elem-
ent of the completion € , of U, may correspondingly be described by means
of a sesquilinear form; moreover all the sesquilinear forms on D are obtained
in this way.

Theorem 6. Let D be a scalar product space. Let us call 8, the space
of the sesquilinear forms on D, endowed with the topology of pointweise conver-
gence, which is determined by the set of seminorms

{F'—> [F(s ) | [(pa y)ED}.

Then the mapping from C, (or B) into 8, defined for any AeC, by AT,
where

Ve,peD  Flpp)=(de|y)

is injective, linecar and bicontinuous. Its continuous cxtension to C, provides
an isomorphism of the topological vector spaces U, and S, (¥*).

(3%) We remark that Theorem 6 is in accord with the fact that, even in the case
of complete D, B,, which is then the space Z(H) of the bounded operators of the
HirBERT space H, endowed with the weak topology, is not complete, though it is
sequentially complete. In fact the elements of #(H) are known to correspond to the
continuous sesquilinear forms on H. If #(H), endowed with the weak topology, would
be complete, then, according to Theorem 6, the set of the continuous sesquilinear forms
on I would coincide with the set 8, of all the sesquilinear forms on H, which is absurd.




28 R. ASCOLI, G. EPIFANIO, A. RESTIVO [8]

The statement derives from Lemma 2 by considering the fact that the

®
mapping I'—F of §, into (D @ D)* defined by

®
Vo,peD  Flp @yp)= F(p, p)

is an isomorphism of topological vector spaces.
Indeed any sesquilinear form F on D, may be considered as a bilinear

®
functional on Dx D and vice versa. Moreover F is just the linear functional
on D@D that corresponds to the bilinear functional I on DX D, according
to the universal property of the algebraic tensor product. It follows immed-
®

iately that the mapping F—F is an algebraic isomorphism of §, onto
(D ® Dy*. '

®
Concerning the topologies the mapping F—+F transforms the set of
seminorms

{F—|P(p,v)]||o, pe D},

which defines the topology on S,, in the set of seminorms

& ®
{F—|Flp @) |p, peD}

on (D ®D)*. It is easily seen that this latter set of seminorms is equivalent
to the set of seminorms

® ®
{F—|P(y)||ye D @D}

which defines the weak topology o((D @ D)*, D ® D) on (D ®D)*. So the
® et e e
mapping F—F is also an homeomorphism of §, onto (D® Dy* and the

statement is proved (1¢).

(%) Analogously let I, (D, D*) be the space of the linear operators from D into
the algebraic dual D* of the complex conjugate D of D, endowed with the weak operator
topology. Then the canonical injection of O} (or B,) into Ly (D, D¥) extends contin-
uously to an isomorphism of ¢, and L, (D, D¥).

Morcover let us endow D* with the weak topology. Then we remark that, according
to Lemma 1, the canonical injection p—¢’ of D, into D¥, defined byV yeD (¢, p> =
= (p|w), is bicontinuous and its continuous extension to D,, provides an isomorphism
of the topological vector spaces Dy, and D*. It may easily be deduced that it is also
canonically C, = L(D, D).



[9] #-ALGEBRAE OF UNBOUNDED OPERATORS IN SCALAR-PRODUCT SPACES 29

4. - The sequential completions f}D and 51, for separable D.

The propositions of this paragraph hold under the assumption of separ-
able D.

In order to derive that, for sequential completions (*%), it is ED=O~D, we
want to prove that CDCB’ »+ Actually a somewhat stronger statement holds,
in which the topology that is assumed on B, is finer, according to the following
definition.

Definition 3. For any scalar product space D we call D-strong topology
on €, (or B,) the topology that is defined by the set of seminorms

{A—|4g||peD}.

Theorem 7. For any separable scalar product space D, C, is coniained
in the sequential completion of B, endowed with the D-strong topology.

Proof. Let (¢,) be an orthonormal basis in D and let P, be the orthog-
onal projector on e,. Then, for any element 4 of ¢, and for any », the prod-
uct P,4 is bounded because it is (*2)

VoeD |P,dp|=[(4ple,)| = | (pld*e,)| <|4*e,[|p] .

So for any » it is P, AdeB,.
Let us then consider the sequence (4,) of operators of B,, with 4,=

. L
=>,P,A. As (¢,) is an orthonormal basis, we have:
1

VyeD lim 3, Py=1yp.

> 1

() The sequential completion X of any HaUsDORFF topological vector space X

is defined as the smallest sequentially complete subspace of the completion f, which
contains X. We recall that in general, whenever X does not satisfy the first countability
axiom, X does neither coincide with the set of the classes of equivalent CavucHY
sequences of X, nor with the completion X

(3¥) The boundedness of P 4 is also a particular case of the proposition: in a
normed space (and actually in more general spaces) any closable operator with finite
rank is continuous. (For the case of normed spaces sece [8], page 166, Problem 5.18).
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Using this statement with p= Ad¢, we get

VoeD imd,p=1m Y P Adp= Ap.

fi~> fi—> 1

So the arbitrary element 4 of C,, turns out to be the limit of the sequence (4,)
of elements of B, with respect to the D-strong topology of €, introduced in
Definition 3. So the theorem is proved.

It follows immediately:

Theorem 8. For any separable scalar product space D it is, for the sequen-
tial completions, Bl,:éﬂ.

In fact, the D-weak topology being coarser than the D-strong topology,
the statement of Theorem 7 holds also with the .D-weak topology on B,, that
is ¢,cB,. It follows C,cB,. It is obviously B,c{,, hence it is B,=C,.

Appendix.

Let us give a simple example to show that in general B, and C, are not
sequentially complete and there exist elements of their sequential complet-
ion which do not represent operators of I (nor operators from D into
H=D) ().

Let D be the space of the (finite) linear combinations of the vectors of an
orthonormal basis (e¢,) of an infinite-dimensional separable HILBERT space H.
Clearly, in this case, any sesquilinear form ¥ on D (that is any element of §,)
may be represented by means of the matrix (F,,)= (F(e#, e,)) and conversely
any (countably infinite) matrix represents an element of S,. Moreover the
pointweise convergence in S, corresponds to the convergence of the matrix
elements. :

(**) We mean precisely that there exist clements of B, whose corresponding sesquil-
inear form F (in the sense of Theorem 6) is such that there exists no linear operator A
from D into H = D for which

Vo, yeD, Flo,p)=(dp|y).
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Let us then consider the sequence (F) of the sesquilinear forms that are
represented by the matrices

1 0 0 0 1 0 0 0
0 0 0 0 10 0 0
(FD)=10 0 0 0 , F®) =10 0 0 0 ,

0 0 0 0 0 0 0 0

10 0 0

1 0 0 0

(F9=11 0 0 0 -|,
0 0 0 0

It is immediately seen that such forms correspond, with reference to Theor-
em 6, to bounded operators (A™) of D, with an adjoint in D, hence to elements
of B '

Moreover the matrix elements of the above sequence of matrices converge,
so that the sequence (F™) converges in the (complete HAUSDORFF) space S,
to the sesquilinear form I" that is represented by the matrix

e e Y
(=R el e I )
oo o O

So, according to Theorem 6, (A™) i3 a CAUCHY sequence in B, and the form I
corresponds to its limit within 5,: It is easily seen that the form I represented
by the above matrix cannot correspond to any operator with values in H:
in fact it does not satisfy the necessary condition that the columns of the repres-
enting matrix represent veectors of H.

So it is proved that the element P of §, corresponds, according to Theorem 6,
to an element of BD which does not represent any operator with values in H.
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Summary.

We consider the particularly simple fopological sk-algebra of unbounded operators of
any (not necessarily complele) scalar product space D, that consists of the space of the linear
operators that are defined on D and have an adjoint in D, endowed with the wealk topology.
We had already introduced this algebra in a previous paper: here we study some easy prop-
erties of it, of its completion and of ils sequenlial completion.

Sommario.

Per ogni spazio D dotalo di prodotto scalare (non necessariamente completo) si prende
in esame una k-algebra topologica di operatori non limitati particolarmente semplice, gia
introdotta in un precedente lavoro: essa & costituita dallo spazio degli operatori limeari
definitt su D ed aventi un aggiunto in D, dotato della iopologia debole. Nel presenie lavoro
si studiano alcune facili proprieta di tale algebra, del suo completamento e del suo completa-

menio sequenziale.
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