Riv. Mat. Univ. Parma (3) 2 (1978), 251-276

Winpiam D. L. APPLING (¥)

A Generalization of Absolute Continuity
and of an Amnalogue

of the Lebesgue Decomposition Theorem. (**)

1. - Intreduction.

Suppose U is a set, F is a field of subsets of U, p is the set of all real-
valued functions defined on F, p, is the set of all bounded elements of p, b, is
the set of all finitely additive elements of p,, pt is the set of all nonnegative-
valued elements of p, and b’ =p, Nyt

Suppose g is in p¥ and A4, is the set of all y in p, absolutely continuous
with respect to w. In two previous papers[1],[3] the author has proved,
collectively, the following theorem.

Theorem A.1l. There is a transformation 8 from p, info A, such that
if x is in p,, then 8(y) has the integral (Section 2) representation:

8(x) = [T(0) M (%)
where ©(yx) and A*(y) are elements, respectively of p, and ApN pt, defined by

1 o<y
() = {-—1 it 4(V)<0,

AE()(V) = sup{z|z =mein{lx(c7) |, Ku(I)}, 0< K}.

8 is linear, and if x is in p, and n is in Ay, and 9 7 8(y), then

!

2L =3I | < [2(D) —n(D) ],

U

(*) Indirizzo. Department of Mathematics, North Texas State University, Denton,
Texas 76203, U.S.A.
(**) Ricevuto: 2-IX-1970.
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and

0= gmm{lx(I)—S(x)(I)l, w(I)} <£min{ 2D =), W)}

We note that Theorem A.1 is a «near point theorem » in that it says,
among other things, that for each y in p,, there is an element 8(x) of p,,
absolutely continuous with respect to u and « closer to 7z » (in the variation
sense) than any other element of p, absolutely continuous to . Theorem A.l
further says, in the second of the above inequalities, that if y is in p,, then
8(y) is the only element ¢ of p, absolutely continuous with respect to u such
that y—¢ and u are « quasi-mutually singular % & property that we shall
define and characterize in Section 2, and which the reader will easily see is
equivalent, in the countably additive case, to the well-known « mutually sin-
gular » property. We therefore see that Theorem A.l is an analogue, for the
finitely additive case, of the LEBESGUE Decomposition Theorem.

In this paper we generalize Theorem A.1. We begin with the observation
that 4, is a C-set in accordance with the following definition.

Detfinition. The statement that M is a C-set means that M C p, and
M satisfies the following two conditions:

i) If y is in M and # is in p, and
Ixl=Jlnl

is in p¥, then % is in M, and

ii) if f is in p* and « is the element of b given by
a(V) = sup {zlz =y(V), yin M N pj’ f—y in pi},

then « is in M N p¥.

Needless to say, A, is just one of many examples of a C-set, and at the
end of this paper (section 7) we shall list some further ones.

Suppose M is a C-set. For each y in p 4> 16t ©(x) and A(y) be elements,
respectively of p, and M N pt, defined by

) _ 1 if 0< x(V)
T(WV) = {__1 if y(V)y<o0,

M(V)=sup{ele= p(V), y in Mnpk, [lg| —y in pi}.
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We first prove the following generalization of the «near point» portion
of Theorem A.1 (section 3):

Theorem 3.1. There is a transformation o from p, into M such that
if x is in p,, then a(y) is given by

a(y) =[x Mz) -
o has the property that if n is in M and x is in p, and
n 7= alz),
then

J 1) — a(2)(I) | <J [x() —nd)].

28

Then, before we pursue the question of a generalization with respect to M
of the remainder of Theorem A.1, we demonstrate two further basic prop-
erties of a (section 4):

Theorem 4.1. If each of y and n is in p, and V is in F, then

[laG)D) — oD <2 12D | — @) | + | 2(1) — 5(D)]] -

v
Theorem 4.2. If each of x and n is in p,, then
Jmax {a(y), a(n)} = o (f max {y, n})
and
[min {a(y), a()} = o (f min {y, 7}) .
Obviously the question of the linearity of « involves the question of M’s

being a linear space, and indeed we show (section 6, Corollary 6.1) that if M
is a linear space, then « is linear. Now it is easy to see that if & is linear, then

oy —a(x))(U) =0

for all x in p¥. It is the question of the validity of this identity that gives
us the following characterization theorem (section 5):
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Theorem 5.1. The following two statements are equivalent:
(1) If % is in pt, then

a(y —a())U) =0,
(2) M is o linear space.

‘We then prove (section 6) the following generalization of the second ine-
quality of Theorem A.1l.

Theorem 6.1. If M is o linear space and y is in p, and n is in M and

n # a(z),

then

0 2[{ la(x-—a(x))(I)l<§°t(x—-77)(1)l :

2. - Preliminary theorems and definitions.

We refer the reader to sections 2, 3 and 4 of [1] and section 2 of [4] for
the basic facts, notions, notations and conventions concerning subdivision,
refinement, integral, >-boundedness and sum supremum and sum infimum
functional. We also refer the reader to [4] for a statement of KoLMOGOROFF’s [5]
differential equivalence theorem and its implications about the existence and
equivalence of the integrals that we shall use. When the existence of an integral
or its equivalence to an integral is an easy consequence of the above men-
tioned material, the integral need only be written, and the proof of existence
or equivalence left to the reader.

Suppose y is a binary operation on the real numbers and o is a function
from and into the real numbers. When convenient, we will use the convention
that if each of o and f is in p and each of

I pla(), BI)) and  [o(a(I))

T 122

exists, then

J‘W(“y B) and J‘ o)
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denote, respectively, the elements y and ¢ of p given by

(V) =£?P(<%(I)y pI) and  uV)=Jo(«l)).

¥V
Also, when convenient, we will denote
[ max {«, £} and Jmin {e, £}

respectively by
aVp and NN

We now consider, as mentioned in the introduction, the notion of quasi-
mutual singularity and give a characterization of it.

Definition. If each of # and ¢ is in p,, than the statement thatn and ¢
are quasi-mutually singular means that if 0 < ¢; then there is an 4 in F such
that

max {f [n(0)], | 4D}} <o

-4

Theorem 2.1. If each of n and ¢ is in p,, then the following two state-
ments are equivalent:

(1) Ufmill{fiﬂ(zf)l, {MJ)} =0,

(2) 5 and ¢ are quasi-mutually singular.
Proof. Suppose 1) is true and 0 < ¢. There is a subdivision ® of U
such that

c> }D:miﬂ{{l??(J)lylf D} = 2 [ )|+ Dzlf EOMP

Dy I

where ®, is the set (if any) of all I in © such that

Fln(] <If [()] 5

1

and ®, =D —D,. Letting 4 = UI, so that U— A4 =uU I, we have that

Dy Dy

o> [In()] 4 ] [1)] =max ([ a1, ] |4}

Therefore 1) implies 2).
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Suppose 2) is true and 0<<¢. There is an 4 in F such that
max { { p(J}], [ ()|} < ¢f2.
4 T—~4
Letting ® = {4, U— 4}, we see that
[rin {f [n()], [ |uI)]} < Zmin {[ |n()], [[o()]} <
o 1 I D I 1
JIn@ ]+ Flu]<e2 +o2=c.

4 g—4

Therefore 2) implies 1).

Therefore 1) and 2) are equivalent, and as asserted in the introduction,
this characterization gives the desired quasi-mutual singularity interpretation
to the second inequality of Theorem A.1.

3. - The C-set extremal theorem.

In this section we prove Theorem 3.1, as stated in the Introduction.
Lemma 3.1. If each of A and 7 is in M N pt, then

fmax {1, }
is in M N ph.
Proof. Let f denote [max{2,7}. Obviously f is in p¥.
Let o denote the element of p defined by

a(V) = sup {zlz = x(V), y in M N pj, f—x in pj} .

o is in M N p%, and f—o is in pt. We therefore merely need to show that
a—f i3 in p} in order to prove our lemma. Obviously each of f — A and
f—mn is in pk, so that each of « — 2 and o« —# is in p}, which immediately
implies that o— [max {4, 7} is in p%.

Therefore o« = f§, so that § is in M and therefore in M N p*.

Lemma 3.2. If ¢ is in p% and u is in M N p% and

n F= AL,
then
J 1Ty — A) ()] <Uf [o(I) —n(I)] .

U
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Proof. Let A and B denote, respectively, A() and [min {¢, n}.
From i) of the definition of a C-set it follows that f§ is in M, and we see
that # is in p%. Furthermore, we see that 2—f is in p*. Therefore, for

each V in F,
J lL(I)_W(I)Izim&X {e(X), n(I)} ——Jmin {(I), n(D)} >
> V) — V).
If A —1 is not in p¥, then (—# is not in p%, so that for some V in F,
(V) > uV),

so that

J;m&X {uD), n(1)} —J: win {(I), n(1)} > n(V) — AV) > V) — AV) ,

so that
g[t(I)——n(I)l=fl6(I)—~77(I)l +; [o(I) —n(I)| >

v—-v

>U—=V)—MO—V)+ uV)—UV)= (U)—ANU).

If A—n is in p7%, then for some V in F,

(V)< A(V),
so that
i [e(I) — ) | > V) — (V) > V) — AV),
so that
Jlt(l)-—n(I)l»——‘_ﬂb(I)—n(l)l +VHL(I) —n(I)| >
> U—=V)— AT —TV) 4+ (V) — V)= (U)— AU) .
Therefore

ﬁfIL(I)-ﬂ?(I)l> (U) = MU) = [ |«I) =MD,

g

since ¢+ — A(s) is in p7.



258 W. D. L. APPLING [8]
We now prove Theorem 3.1.
Proof of Theorem 3.1. Suppose y is in p,. We see that Mzl is in

P, My) is in M N pk, and that t(y) is in .
We see that for each X in F,

(X)) (X)) = | 2(X)],

which implies that for each V in F,

exists and is

Since
V) () (V) =1
for each V in F, it follows that

Je@ =) 1(I)

/4
exists, so that

J7 M = )) 2
exists. Since [|yx]|—A(y) is in p¥, it follows that

[ ()@ M)

U

exists.
We therefore see that there is a transformation o from p , into p, such
that if y is in p,, then «(y) is given by

a(y) = [=(x)A(x) -

We immediately see that if y is in p,, then a(y) is in M from i) of the
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definition of a C-set, and we also see that
Fa) =AMz = a(f1z]),
as well as the fact that if ¢ is in M, then
aft) =1t.
Now suppose y is in p,, # is in M and
n # a(y) .

Let 7 and 1 denote, respectively, ©(y) and A(y).
flp] is in M NPk, and it is either true that

.H"”:]H

or not.
Suppose that

flnl=# 2.

Then

[z —nd)>] [lz@— D] =

/4

UH {lx(J)l—Ifln(J)l \>J]{Iflx(J)l]—7~(I)l

I

by Lemmsa 3.2, Now
J l[,f L] —Ad) |= | 2| — 20| =

= [ oD | o@D — AD | = [ 1D o) xI) — ?DH UD | =

2

=] IX(I)—IT(J)Z(JH:UI [2(I) —a(){D],

U I

so that

flx(1)~n(1)i>§ | %(I) — a()(D)] -

o
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Now suppose that
Jlnl=2.
We see that for each V in F,
(M < AV,

which implies that

J=@)n(I)
exists.
Now
glx(I)—n(I)l=”flT(I)lIx(I)—n(I)IZ
=l — DD =[] 2] = U + MD) — «(D () | =
=;l[; | [1— (D)) + D) — =D y(D)| =
=IO 2D = 2D | + =D | |40) — (T)n(I) | =
= [ 1= 2D — 7D AD] + [ 121 AD) — (D1 | =
= D =D UD] + S| = M ] = ()| =
= J12D =« + [e()D —n(D)] > [120) — (D] -

Therefore

flx(I)—~77(I)l>glx(1)—a(x)(1)l .

/8

4. - A continuity and a fanctional equation theorem.

We precede the proof of Theorem 4.1 by four lemmas.
Lemma 4.1. If each of x and 7 is in p¥, then

f10]

Jmax A(x), M)} = A(fmax {z,7}) and [ min {A(y), A(p)}= A (J min {y, n}).
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Proof. Suppose 0 <¢ and ¥V is in F. There is an ¢ and a v, each in
M N pt such that each of y —: and n—» is in p} and

A)(VYy — Ty < ¢f2 and A(VYy— (V) << e/2.
Each of A(y)—:¢ and A(p)—w is in p¥, [max{, v} is in M N p%, and
Jmax {y, n} — fmax {s, ¥} is in p%, so that, respectively each of [max {A(y),
A} — fmax {¢, v} and A{[max{y, n})— fmax{, v} is in p%. Furthermore,
imm A, M)} — [ max {(D), p(I)} <e¢/2 + ¢/2= ¢,
so that
[ max AMz)(D), M)(I)} < ¢ + [max {(I), p(I)} <
< ¢+ A(Jmax {z, 73) (V) .

Therefore A( fmax {y, #})— [max {A(y), M)} is in p%.
Now, suppose for some V in F,

g max {A(x)(I), Am)(D)} < A(fmax {, n}) (V).

There is an ¢ in M N p% such that [max {y,n}—o is in p¥ and

Jmax () (1), M)} < o(V) .
v

Each of [min{y,o} and [min{y, o} is in M N %, and each of y—[min{y, o}
and n— fmin{n, o} is in p}, so that each of A(y)— [min{y, o} and A(n) —
— fmin {, o} is in p%, which implies that p*% contains [max{A(y), A(n)}—
—fmax {{min {y, o}, [min{n, ¢}}. Now [max {fmin {y, s}, min {5, o}} = [min
{fmax {y, 7}, o} =s, so that [max{A(y), Mn)}—0c is in p¥, a contradiction.
Therefore [max {A(x), AMn)} —A(fmax {y, n}) is in p¥.

Therefore

Jmax {A(x), A} = A ([ max {, n}) .
To show that
Jmin {A(x), A(n)} = A (fmin {, n}),

we need only modify the above argument by changing «max» to « min»,
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Lemma 4.2. If each of y, n and x—n is in b%, then so is y—n—
—[A() — A
Proof. Obviously each of A(y) —A(n) and n—A(x) is in p} and there-
fore so is [min {A(y), 7} —A(n). Now, 7 — fmin{A(y),n} is in p* and
Jmin {A(x), n} is obviously in M N pk, so that A(y)— [min{A(x),n} is in p¥.
Therefore

7) = [ min {Ay), 7} -
Hence, if V is in F, then
M) (V) =M (V) = [min A, 2(D} — [oin AG)(D), 7}
<x(V)—n(V).
Thereforé 2—n—[A(g) —A@)] is in pf.
Lemma 4.3. If each of ¢ and vy is in p%, then so is

Jle=2w| —=[IA() —Aw)] .
Proof:
Jle—=v|—J A0 —Ay) | = [max {i, p} — [min {, yp} —
[/ max {A(s), A(p)} — [ min {A@), A(p)}]

which, by Lemma 4.1, is
fmax {t, p} — [min {&, p} — [A ([ max {;, y}) — A ([ min {, p})],
which, by Lemma 4.2, is in p7.
Lemma 4.4. If each of y and n is in p, and V is in F, then

Je (I == [ 1z D < [L{lnD 1= 12D |+ 10D — (D]

Proof. Suppose I is in F. If D is a subdivision of I, then

Dz [em)() ] !n!—r(x)(J)JI 1zl |=

= Z[(JInl—=J 1z =) + o) — =@} [ 121 | >
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\Y%

.,Z IT(??)(J)—T(Z)(JHJHZ!"DE | Jfl?]l —Jf %] ] 1)) -

This implies that
s* (el — (] 121D <5 (1 [ In] =T x| =)D +
+ s* () fln] — =) [z D) -
Therefore
Jo* (e == Tl < [ (15 1n1 = 1z =) ) (D) +

J+S*(l'c(77)ﬂnl—r(x)flxl !)(I)zyf[[!n(l)— 2@ + [nd@)— 2|7

‘We now prove Theorem 4.1, as stated in the introduction.

Proof of Theorem 4.1. Suppose I isin F. If D is a subdivision of I,
then

2. 1T AN T) — T M) | <

F/

< % [=)() M) — A () | + g |em () — =) M) -

This implies that
s*(|T(7) Map) — w() M) ) < s¥(|1 M) — M) )(T) +
+ s*(| () — () M) (D) -
Therefore, if V is in F, then

J el (I) — ) ()| = 1[l’t'(77)(1)7~(?7)(1)—1'(:1{)(1)7\(%)(I)| =

= [ *(z(m) M) — () A1) < [*(1A0) — M) D) +

14

+ [ 8 (leim) —w(2) [A)) < [s*(1A0) — M) +

14

+;[S*(If(n)——r<x)l Hxl)(I):J AT I DO —A (gD | +
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+£s*(lv(77)~f(x>lflxl)(1)<£tlf!miﬂx!l +
+;[ P | — [z + o) — x() |] =
:;[[2 D | — @] + (D) — x(D)]] -

Therefore

D) — 9@ ||+ |2 —nD]] -

J e T) —amp)d) | < [[2
14
‘We now state and prove three lemmas that we will use to prove Theorem 4.2.

Lemma 4.5. If uisin p%, a<b and B is a function from F into {a, b}
such that [B(I)u(I) exists, then
u

g; BV ulD) — [ BN T)| = 0.

I

Proof. Suppose 0 < e¢. By the theorem of KoLMOGOROFF[5] previously
mentioned, there is a subdivision ® of U such that if € is a refinement of ®
then

2BV V) =B I < e.
B 14
Now suppose € is a refinement of ®. Suppose V is in € From the hypoth-

esis it follows that either S(V)<f(J') for all J' in F, or S(J')< (V) for all &'
in F. In the first case

J1BV) u(I) — [ B(T) ()] =Vf [lfﬂ(J)M(J)~ﬂ(V)#(I)] =

v I

= [‘[ﬂ(J)#(J)]—ﬁ(V)M(V) = BN (V) —[ B ()| ;

in the second case
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Therefore

EEJ lﬂ(V)#(I)—Ifﬁ(J)/«L(J)I = EZ BV (V) —Vf B ()] <e.

Therefore

gi BTy ) — [ BT ()] = 0.

Lemma 4.6. If yx is in p%, B is in p, L —pF1=0, and [B(I) ()
exists, then ’
A(fBx)=[B22) -

Proof. We first observe that if d is 0 or 1, then dA(y)= Mdy). We
also easily see that

JBID AT

exists and that [fA(y) is in M N yp).
Now suppose 0 < e¢. From Lemma 4.5 it follows that there is a subdi-
vision ® of U such that

21 1BV 2(I) ——Ifﬂ(J)x(J)f <of3

and o
ST = [ BN MDD < ef3,
so that
T (J B2 @ =] BRI < 21 (12 (D = MEV) 2D +
+ 3B — ] B (D)|<
< ST 2D — T 2D + ef3 <2ef3 <0
Therefore

J |2 (B2) (D) —Ifﬁ(J)l(x)(J)l =0,

19
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s0 that
MBx) =Py -

Lemma 4.7, If is in p,, then

a(jmax {n, 0}) = f max {a(n), 0}

and
o ( fmin {n, 0}) = [ min {a(z), 0} .
Proof. If y is in p,, then
o ([max {g, 0}) = A ( [max {x(y)[z], 0}) = 2 (f max{[(~(x) + 1)/2]|x], 0},
which by Lemma 4.1 is
[max{A([[(x(x) +1)/2]]|z]), 0} -
Obviously for each I in F, (t(y)(I)+1)/2 is 0 or 1. Therefore by Lemma 4.6,
Jmax{® ([{{(v(x) +1)/2] [ 121}), 0} = [max{[[(v(x) + 1)/2] A(z), 0} =
- ImaX {=(x) Ax), 0} = Ima’x {ala), 0} .

Before proceeding we note the fact, and leave the easy proof to the reader,
that if y is in p,, then

oa(—x) =—aly).
From the above two paragraphs we see that if ¢ is in p,, then
o (fmin {t, 0}) = a(— [max {—¢, 0}) = — o ([ max {—:, 0}) =
— fmax {a(—1), 0} = [min {—a(—:), 0} = [ min {a(c), 0} .
We now prove Theorem 4.2, as stated in the introduction.

Proof of Theorem 4.2. If each of ; and v is in p,, then

2(VPIVO = al[tVy]V0) = a([ev0]VI¥V0]) = A(LVOIV¥V0]) =
AVOVABVO) = altV0)ValpV0) = [a() VO]V a(y)V0] =
[e()Va(y)]VO,



171 A GENERALIZATION OF ABSOLUTE CONTINUITY ... 267
and
a(eVPIAO = a[((VPIA0] = a[LAO)V (PA0)] =

o[ — {(— LAODA(—[wAO}] = — a[(— AODA(—[¥A0])] =

— A[(— LAODA (= [wA0D)] = — (A(—[AOD) AN~ [y A0])} =

— {e(—[eAOD)Ac(— [wA0])} = — {(— atAD)A(— a(pA0))} =

a(tAO)Vea(pA0) = [a() AOIV[a(p) A0] = [a(e) Va(¥)IAD
0 that from the identity
% = max {z, 0} + min {y, 0},
we have
a(tVy) = a()Valy) .
From the above paragraph we have that if each of ¢ and » is in p,, then
a(oc\v) = a(—[(— o)V (—)]) = — &((— o)V (—7)) = — [a(— o) Va(— )] =

— [(— (@) V(—a®)] = a(c)Aa() .

5. - The O-set-linear space characterization theorem.

In this section we prove Theorem 5.1, as stated in the Introduction.

Proof of Theorem 5.1. TFirst, suppose 1) is true and y is in M N p?.
Obviously each of

29 — a(2y) and a(2y) —
is in p*, which implies that
v —[2y —a(2y)]

is in pt, so that

2y —a(2y)
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is in M M pt. Therefore
[2y —a@y))(U) = «(2y —a(2y))(U) = 0,
50 that
2y = &(2y),

so that 2y is in M N p} .

Now suppose that each of y and # is in M and ¢ is a number. Let %% and
7" denote, respectively, [|y|and [|y|. By Lemma 3.1, the function o*
given by

y* = fmax {z%, 7%}
is in M N p*, so that by the preceding paragraph, 2¢* is in M N pt. Since
2y* =L + ¥
is in p*, it follows that
AR A
is in M N p%, and therefore, since
2t =[x+ |

is in p7, it follows that y-+# is in M. Now there is a positive integer »n such
that '

[e] < 2m
By induetion,
on g
is in M N p%. Furthermore,
2mapt—{{on|

is in p,, so that ey is therefore in M. Therefore M is a linear space.
Therefore 1) implies 2).
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Now suppose 2) is true and y is in b,. Obviously each of
g—olz) and  [y—aly)]—aly —a(y)]
is in pj, so that
%= {e) + alx — o))}

is in p*. Since

a(x) + aly — a(x)]
is in M pE, it follows that p¥ contains

a(y) — {a(z) + alx — a(n)]},
which is
—afz—a(x)].

Sinee afy— a(g)] is in p7, it follows that

aly —a(x)(U) =0.

Therefore 2) implies 1).
Therefore 1) and 2) are equivalent.

6. -~ Two linear space theorems.

We suppose throughout this section that the C-set 3 is a linear space.

In this section we prove Theorem 6.1 and Corollary 6.1, as stated in the
introduction.

We begin with a lemma.

Lemma 6.1. If each of x and 7 is in p% and 0<e, then each of

a(x) + aln) —a(y + ) and  ca(y) — a(cy)

is in pt.
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Proof. We first show that

o(x) -+ aln) —aly + )

is in pt.
Suppose, on the contrary, that for some X in F,

() (X) + el (&) < a(y + (X)) .
There is a y in M N p% such that y+ n—yp is in p¥ and such that
a()(X) 4+ am(X) < p(X) .
Let p and v denote, respectively,
fmin{y,y} and fmin {n, y} .
Obviously each of ¢ and v is in M N pt, so that o+ v is in M N pt. Bach
of y— o and n—v is in p}, so that each of a({y) —p and a(y) —v is in p*.

Since y -+ #—y is in p¥%, it follows that if V is in F, then

o(7) + #(7) = [ [min (D), (D)} + min {y(I), (I} >

Therefore, since p}; contains each of ¢4 v —y and a(y) — o -+ a(y) —», which
is a(y) + a(n) —[e + 7], it follows that a(y)+ «(n) —y is in p¥, so that

X)) <a()(X) 4 a(n)(X),

a contradiction. Therefore a(y) -+ a(y) —ea(y + ) is in p7.
We now show that

ca(y) — alcy)
is in pF.
Suppose, on the contrary, that for some X in F,

ca()(X) < alex)(X) .
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Obviously ¢> 0. There is a p in M N p* sueh that ey —y is in p% and
ca(x)(X) < p(X) .

Now y—(1/e)y is in p, and (L/e)y is in M N p%, which implies that a(y)—
(1/e)y is in p,, so that

(1) p(X) <er(z)(X)
so that
&) <ca(x)(X),
a contradiction. Therefore ca(y) — a(cy) is in pi.

Before proving Theorem 6.1, we gain degress to show, as asserted in the
introduction, that Theorem 6.1 is indeed a generalization of the second ine-
quality of Theorem A.l.

We first observe (see [2], p. 142) that if each of ¢ and v is in p} and

0— lmein Iy, (D)},

then
0 = [min {(I), Kp(I)}, 0< K.

This implies, by the second inequality of Theorem A.1, that if y is in p,,
7 is in A, and 1<K, then

0 ~—~{7min{!x<1> —8(D) |, Eu(I)},
and

0< Jmin{ix(f) — (D1, M(I)}<Uf win{| x(I) — (@), Kud)},

so that
515(9&- 8(x))(D) | = A (x —8(x))(U) = 0 < A¥(x —n)(U) =

UﬂS(x—??)(I) s

which is the coneclusion of Theorem 6.1 with o = 8.
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We now prove Theorem 6.1.

Proof of Theorem 6.1. First, suppose # is in M N p% and 4 is in
pt and

7 7= o{y) .

‘We show that
0 <[la(x—n)D)|-

Let § denote [max {, a(y)}. Bach of § and f—a(y) is in M Np%. Now
suppose

JMW—MUHzO-
Then
0=e([|x—n])(U)= a(fmax{y,n} —[ min {z, 9}) (V) >
> o ([J max {x, n}] — a(x)) (U) > a ([ f max {a(y), 7}] — a(x)) (T),
80 that
fmax {a(), 7} = a(z),
so that a(y) —# is in M N pk, which implies that y—g# is in p%, so that
0 = a(y —n)(U) > a(aly) —n)(T),
which implies that
o(y) =7,
a contradiction. Therefore

0<JI°¢[(X*?7)](I)I :

Now suppose y is in p,.
‘We show that

0 =£ fafg — a())I)] .
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Let y* denote [|y|. Now
[laly — (D] = a(flx—alx])(U)=

= a(f|t(x)] |z — =) aH) (U) = a([IT()z —=x)* a(z)]) (V)=

=a(f|lx]—ax®]) ()= a(flx*—alz)) (U) =

by Theorem 5.1.
Now suppose # is in M and

7 7= aly) .

We see that [|n] is in M N yp*. Also, either

[lnl={ la(x)]
or not.
Suppose
Jnl#{lat0)]-
Then

fla(x —mD|=a(Jlz—nD) (0> ([{lx] — |nl) ()=

U

=a([[[[12]]=[[al)(T) >0,

by the first portion of this proof.
Now suppose

Jlnl= [la()]-
We see that

JT(X)(I)W(I)
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exists and a(x*) —[=(x)n is in p*. Therefore
al Jlz=nD)O)=a([|xx)]||z—n])(0)=
=a( [l z—=x)n) ()= a( [lg*—alx®) + a(x*) — [t(0)n]) (T)>
>a( [la(®) —z()n]) (V)= a( | |T(x)aly*) —=(x)9]) (V)=
= a([|v(a(r*) =) (V)= a([lax) —7]) (V)>0,
since a(y) —7 is in M and
[l —n)| > 0.
Therefore
{7 la(x—m)(I)] > 0.
We now prove Corollary 6.1.
Corollary 6.1. a is linear.

Proof. Suppose each of y and # is in p, and ¢ is a number.
Suppose

a(x + n) # a(x) + alr) .

Then, since a(y) -+ a(y) is in M, it follows from Lemma 6.1 and Theorem 6.1
that

0<oa(f|x+n—Tlalx) + alml]) ()<
<a([lx—a@|+ [ln—am ) (O)<a([|z—a(x)])(T) +
+a(fln—alm)(T)=0+0=0,
a contradiction. Therefore
aly + 1) = a(y) + a(z) .

Now suppose

cofy) = a(ey) .
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Then, since ca(y) is in M, it again follows from Lemma 6.1 and Theorem 6.1
that

0<a(] % — o)) (U) <

oy — oca(x)|) (U) = (l¢}f

<lela(flgx—a(n]) (U)=l6]0=0,

a contradiction. Therefore

ca(y) = alcy) -

Therefore o is linear.

7. - Examples of C-sets.

In this section we discuss some examples of C-sets other than A,, where
u is in p%. We leave the proof that they arve C-sets to the reader. We will
state, in each case, whether or not it is a linear space, but again leave the
proof of the assertion to the reader.

Example 7.1. The set of all « continuous» elements of p,, t.e., the
set to which y belongs iff y is in p, and for each ¢>> 0 there is a subdivision ®
of U such that if I is in a refinement of ©, then

flgehi<e.

I

This is a C-set and a linear space.

Example 7.2. For yx in p} and 0< K, the set of all y in p, such that
for all T in F,

Tz < Epl) -

I

This is a C-set, but not necessarily a linear space.
Example 7.3. For § in p,, the set of all y in p, such that

Jﬁ(l)x(I)

exists. This is a O-set and a linear space.
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Example 7.4. For § in Pz, the set of all y in b, such that
(AL
14
exists and is 0 for all ¥ in F. This is a C-set and a linear space.
Example 7.5. If M is a C-set, then the set of all % in p, such that
a(y) =0

(where a is, of course, the « nearest point transformation » associated with M )
is a C-set and a linear space.

Example 7.6. If Gis a collection of C-sets, then N G is a C-set, although,
of course, not necessarily a linear space.
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