D. K. DUTTA (*)

Some Results on $BV - \omega$ Points. (**)

Let a real valued function $\omega(x)$ be non-decreasing on the closed interval [a, b]. Outside the interval, $\omega(x)$ is defined by

$$\omega(x) = \omega(a)$$
 for $x < a$,

$$\omega(x) = \omega(b)$$
 for $x > b$.

Let S and D denote respectively the set of points of continuity and of discontinuity of $\omega(x)$. Prof. R. L. Jeffery [4] has defined the class \mathscr{U} of functions f(x) as follows:

f(x) is defined on the set S[a, b] and f(x) is continuous at each point of S[a, b] with respect to the set S. If $x_0 \in D$, then f(x) tends to limits as x tends to x_0+ and x_0- over the points of the set S. These limits will be denoted by $f(x_0+)$ and $f(x_0-)$ respectively. When x < a, f(x) = f(a+), and f(x) = f(b-) when x > b. f(x) may or may not be defined at the points of D.

Suppose $\mathcal{U}_0 \subset \mathcal{U}$ contains those functions f(x) in \mathcal{U} such that for $x_0 \in D$, both $f(x_0+)$ and $f(x_0-)$ are finite.

Any set of points

$$a \leq x_0 < x_1 < x_2 \dots < x_n \leq b$$

such that

$$\omega(x_{i-1}) \neq \omega(x_i)$$
 $(i = 1, 2, ..., n)$,

^(*) Indirizzo: Department of Mathematics, University of Kalyani, Kalyani, West Bengal, India.

^(**) Ricevuto: 8-XI-1971.

is called an ω -subdividion [1] of [a, b]. In [1] the following definition has been introduced:

A function f(x) in class \mathcal{U}_0 is said to be of bounded variation relative to ω , $BV-\omega$, on [a, b] if the least upper bound, $V_{\omega}(f; [a, b])$, of the sums

$$\sum_{i=1}^{n} |f(x_i +) - f(x_{i-1} -)|$$

is finite for all possible ω -subdivisions $x_0, x_1, ..., x_n$ of [a, b]. The least upper bound, $V_{\omega}(f; [a, b])$, is called the total ω -variation of f(x) on [a, b].

If $\omega(x)$ is constant in [a, b] then any function in \mathcal{U}_0 is assumed to be BV- ω on [a, b]. In this case we take $V_{\omega}(f; [a, b])$ to be equal to zero.

For a function f(x) in \mathcal{U}_0 we now introduce the following definition:

Definition. Let x be a point in [a, b]. If there exists a closed neighbourhood of x in which f(x) is of bounded variation relative to ω , then we say that x is a point of bounded variation relative to ω of f(x). On the other and, if there is no closed neighbourhood of x in which f(x) is $BV-\omega$, then x is said to be a point of non-bounded variation relative to ω of f(x).

The points of the former type will, in short, be denoted by $BV-\omega$ points, and of the latter type by $NBV-\omega$ points. It easily follows that the set of $BV-\omega$ points of f(x) is either void or an open set, and so the set of $NBV-\omega$ points is closed relative to [a, b].

Now, let x be an interior point of [a, b]. Choose two positive numbers δ_1 and δ_2 such that

$$[x-\delta_1, x+\delta_2] \subset [a, b]$$
.

Let

(1)
$$\theta(x, \delta_1, \delta_2) = \frac{1}{1 + V_{\omega}(f; [\alpha - \delta_1, \alpha + \delta_2])},$$

where $V_{\omega}(f; [x-\delta_1, x+\delta_2])$ denotes the total ω -variation of f(x) in $[x-\delta_1, x+\delta_2]$. The function $\theta(x, \delta_1, \delta_2)$ is monotone nondecreasing as δ_1 and δ_2 tend to zero. We denote the limit

$$\lim_{\substack{\delta_1 \to 0 \\ \delta_2 \to 0}} \theta(x, \, \delta_1, \, \delta_2) \,,$$

by $\theta(x)$. If x is an endpoint of [a, b], the function $\theta(x)$ is defined by taking

a closed neighbourhood of x in its usual restricted way. The function $\theta(x)$ has then a definite value at each point x of [a, b] and $0 \le \theta(x) \le 1$.

It follows easily that if $\theta(x) = 0$ at some point $x \in [a, b]$, then x is a $NBV-\omega$ point of f(x), while if for a point x

$$\theta(x) \neq 0$$

then x is a $BV-\omega$ point of f(x).

The purpose of the present paper is to study certain properties of the set of $BV-\omega$ points and also to establish certain properties of $\theta(x)$. Throughout the paper the following notations will be used:

 S_0 denotes the union of pairwise disjoint open intervals (a_i, b_i) in [a, b], on each of which $\omega(x)$ is constant;

$$S_1 = \{a_1, b_1, a_2, b_2, \ldots\};$$

$$S_2 = SS_1;$$

and

$$S_3 = S[a, b] - (S_0 + S_2).$$

Theorem 1. The function $\theta(x)$ is lower semi-continuous in [a,b]. Proof. Let α be a point of the open interval (a,b) and $\varepsilon > 0$ be arbitrary. There exist two positive numbers δ_1 and δ_2 such that

(2)
$$\theta(\alpha, \delta_1, \delta_2) > \theta(\alpha) - \varepsilon$$
.

Choose two positive numbers $\delta_{\mathbf{2}}'$ and $\delta_{\mathbf{1}}'$ such that

$$[x-\delta_1', x+\delta_2'] \subset (\alpha-\delta_1, \alpha+\delta_2)$$
.

Since

$$V_{\omega}(f; [x-\delta_1', x+\delta_2']) \leqslant V_{\omega}(f; [\alpha-\delta_1, \alpha+\delta_2]),$$

it follows from relation of the form (1) that,

(3)
$$\theta(x) \geqslant \theta(x, \delta_1', \delta_2') \geqslant \theta(\alpha, \delta_1, \delta_2).$$

Combining (2) and (3) we see that for every point $x \in (\alpha - \delta_1, \alpha + \delta_2)$,

$$\theta(x) > \theta(\alpha) - \varepsilon$$
.

Hence $\theta(x)$ is lower semi-continuous at α , and so in (a, b). Similarly we can show one sided lower semi-continuity of $\theta(x)$ at the end-points a and b. This proves the theorem.

Theorem 2. If $\theta(x) = 1$ for every $x \in D$, then f(x) is continuous on [a, b]. Proof. Let $x_0 \in D$. Then

$$\theta(x_0) = 1$$

and so there exists a $\delta_0 > 0$ such that f(x) is $BV-\omega$ in $[x_0 - \delta_0, x_0 + \delta_0]$. Again $\theta(x_0) = 1$ implies that

$$\lim_{\substack{\delta_1 \to 0 \\ \delta_2 \to 0}} V_{\omega}(f; [x_0 - \delta_1, x_0 + \delta_2]) = 0$$

and so, for arbitrary $\varepsilon>0$ there exist two positive numbers δ_1' and δ_2' with $0<\delta_1'<\delta_0,\ 0<\delta_2'<\delta_0$ such that

$$V_{\infty}(f; [x_0 - \delta_1', x_0 + \delta_2']) < \varepsilon$$
.

Hence for any two points ξ , η of S with

$$x_0 - \delta_1' \leqslant \xi < x_0 < \eta \leqslant x_0 + \delta_2', \qquad |f(\eta) - f(\xi)| < \varepsilon.$$

Letting $\xi \to x_0$ — and $\eta \to x_0$ + over the points of S we get

$$|f(x_0+)-f(x_0-)|\leqslant \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary,

$$f(x_0+) = f(x_0-)$$
.

If at points of D we set

$$f(x) = f(x+) = f(x-),$$

then f(x) is continuous on [a, b]. This proves the theorem.

Theorem 3. If $\alpha \in S_3$ is a limiting point of S_3 on both sides and if α is a BV- ω point of f(x), then $\theta(\alpha) = 1$.

Proof. Since α is a BV- ω point of f(x), there exists a $\delta > 0$ such that f(x) is BV- ω in $[\alpha - \delta, \alpha + \delta]$.

Let

$$\pi(t) = V_{\omega}(t; [\alpha - \delta, t]), \quad t \in [\alpha - \delta, \alpha + \delta].$$

Then $\pi(t)$ is continuous on S_3 ([3], Lemma 2.2).

Choose two positive numbers δ_1 and δ_2 such that the points $\alpha - \delta_1$ and $\alpha + \delta_2$ belong to $S_3[\alpha - \delta, \alpha + \delta]$.

Then

$$V_{\omega}(f; [\alpha - \delta_1, \alpha + \delta_2]) = \pi(\alpha + \delta_2) - \pi(\alpha - \delta_1)$$
 ([3], Lemma 2.1).

So,

$$heta(lpha,\,\delta_1,\,\delta_2) = rac{1}{1 + V_\omega f;\, [x - \delta_1,\, x + \delta_2])} = rac{1}{1 + \pi(lpha + \delta_2) - \pi(lpha - \delta_1)} \; .$$

Letting $\delta_1 \to 0$ and $\delta_2 \to 0$ with $\alpha - \delta_1 \in S_3$, $\alpha + \delta_2 \in S_3$, we get from the above,

$$\theta(\alpha) = 1$$
.

This completes the proof.

Theorem 4. If E denotes the set of BV- ω points in S[a, b], then

$$|E|_{\omega} = (LS) \int\limits_{S[a,b]} \theta(x) d\omega$$
,

where $|E|_{\omega}$ denotes ω -mesure [4] of E and the integral is taken in Lebesgue-Stieltjes sense ([4], [2]).

Proof. Since $\theta(x)$ is lower semi-continuous in [a, b], it is ω -mesurable [4] in [a, b]. Moreover, $\theta(x)$ is bounded on S[a, b] and so, $\theta(x)$ is LEBESGUE-STIELTJES integrable in S[a, b].

Again E is the set of points x in S[a, b] for which

$$\theta(x) > 0$$
,

and so, the set E is ω -measurable.

[6]

So,

(4)
$$(LS) \int_{S[a,b]} \theta(x) d\omega = (LS) \int_{E} \theta(x) d\omega + (LS) \int_{S[a,b]-E} \theta(x) d\omega .$$

Let F denote the set of points of ES_3 which are limit points of ES_3 on both sides. Since $ES_3 - F$ is at most enumerable,

$$|ES_3|_{\mathfrak{m}}=|F|_{\mathfrak{m}}$$
.

Now,

$$\left|S_0\right|_{\omega} = 0$$
, $\left|S_2\right|_{\omega} = 0$.

Also,

$$\theta(x) = 0$$
 for $x \in S[a, b] - E$, $\theta(x) = 1$ for $x \in F$.

So, from (4) we get

$$\begin{split} (LS) \int\limits_{S} \theta(x) \, \mathrm{d}\omega &= (LS) \int\limits_{ES_3} \theta(x) \, \mathrm{d}\omega + (LS) \int\limits_{ES_0} \theta(x) \, \mathrm{d}\omega + (LS) \int\limits_{ES_2} \theta(x) \mathrm{d}\omega \\ &= (LS) \int\limits_{ES_3} \theta(x) \, \mathrm{d}\omega = (LS) \int\limits_{F} \theta(x) \, \mathrm{d}\omega = |F|_{\omega} = |ES_3|_{\omega} = |E|_{\omega} \,. \end{split}$$

Theorem 5. If $\omega(x)$ is strictly increasing and continuous in $(\alpha, \beta) \subset [a, b]$, then the set of points in (α, β) of discontinuity of $\theta(x)$ is non-dense in $[\alpha, \beta]$.

Proof. Let A denote the set of points of discontinuity of $\theta(x)$ in (α, β) and let $x_0 \in (\alpha, \beta)$ be a BV- ω point of f(x). By Theorem 3,

$$\theta(x_0) = 1$$
.

Since $\theta(x)$ is lower semi-continuous and $0 \le \theta(x) \le 1$, it follows that $\theta(x)$ is continuous at x_0 . Hence each point of A is a $NBV-\omega$ point of f(x).

If possible, suppose A is not non-dense in $[\alpha, \beta]$. Then A is everywhere dense in an interval $[\alpha', \beta'] \subset [\alpha, \beta]$. Denote $A[\alpha', \beta']$ by A_1 . Since the set of NBV- ω points of f(x) is closed, it follows that A_1 is a closed set. Again since A_1 is everywhere dense in $[\alpha', \beta']$, every point of $[\alpha', \beta']$ is a NBV- ω point of f(x).

So,

$$\theta(x) = 0$$
 for $x \in [\alpha', \beta']$.

Hence $\theta(x)$ is continuous in (α', β') which contradicts the definition of A and completes the proof of the theorem.

I am grateful to Dr. M. C. Chakrabarty for his kind help and suggestions in the preparation of the paper.

References.

- [1] P. C. Bhakta, On functions of bounded ω -variation, Riv. Mat. Univ. Parma (2) 6 (1965), 55-64.
- [2] M. C. CHAKRABARTY, Some results on ω-derivatives and BV-ω functions, J. Austral. Math. Soc. 9 (1969), 345-360.
- [3] M. C. CHAKRABARTY, On the space of BV- ω functions, Fund. Math. 70 (1971), 13-23.
- [4] R. L. Jeffery, Generalised integral with respect to functions of bounded variation, Canad. J. Math. 10 (1958), 617-628.

* * *

