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D. K. DurTa (%)

Some Results on BV -0 Points. (*%)

Let a real valued function w(x) be non-decreasing on the closed interval
[a, b]. Outside the interval, w(x) is defined by

o(r) = w(a) for < a,
w(z) = w(d) for x>10.

Let S and D denote respectively the set of points of continuity and of discon-
tinuity of w(x). Prof. R. L. JEFrERrY [4] has defined the class # of functions
f(z) as follows:

f(z) is defined on the set S[a, b] and f(x) is continuous at each point of
S[a, b] with respeet to the set §. If x,€.D, then f(») tends to limits as »
tends to @y~ and z, — over the points of the set 8. These limits will be
denoted by f(w,+) and f(x,—) respectively. When z < a, f(z) = f(a-+), and
f(w) = f(b—) when x> b. f(z) may or may not be defined at the points of D.

Suppose #%,c% countains those functions f(x) in % such that for w,eD,
both f(w,-+) and f(z,—) are finite.

Any set of points

R T A A/
such that

o(®;_;) # w(®;) (t=1,2, ..., m),

(*) Indirizzo: Department of Mathematics, University of Kalyani, Kalyani, West
Bengal, India.
(**) Ricevuto: 8-XI-1971.




234 D. K. DUTTA [2]

is called an o-subdividion [1] of [a, b]. In [1] the following definition has
been introduced:

A function f(z) in class %, is said to be of bounded variation relative to w,
BV-w, on [a, b] if the least upper bound, V(f; [a, b]), of the sums

[f@it) — i —) |

s

L3

is finite for all possible w-subdivisions %, #,, ..., %, of [a, b]. The least upper
bound, V,(f; [a, b]), is called the total w-variation of f(z) on [a, b].

If w(w) is constant in [a, ] then any function in %, is assumed to be BV-w
on [a, b]. In this case we take V (f; [a, b]) to be equal to zero.

For a function f(x) in %, we now introduce the following definition:

Definition. Let # be a point in [a, b]. If there exists a closed neigh-
bourhood of w in which f(z) is of bounded variation relative to w, then we say
that # is a point of bounded variation relative to w of f(#). On the otherhand,
if there is no closed neighbourhood of » in which f(#) is BV-w, then # is said
to be a point of non-bounded variation relative to w of f(x).

The points of the former type will, in short, be denoted by BV-w points,
and of the latter type by NBV-w points. It easily follows that the set of
BV-w points of f(x) is either void or an open set, and so the set of NBV-w
points is closed relative to [a, b].

Now, let # be an interior point of [a, b]. Choose two positive numbers 6,
and J, such that

[x— 0, &+ 6] C [a, b].
Let

1
14+ Volf; [o— 6y, a + 6,])

1) 0 (z, 0,, 8,) =

where V,(f; [#— d;, #+ 6,]) denotes the total w-variation of f(z) in [#— §,,
% J,]. The function 0(w, d,, d,) is monotone nondecreasing as ¢, and d, tend
to zero. We denote the limit

lim O(z, 6y, 3,),
el

by 0O(z). If z is an endpoint of [a, b], the function 6(x) is defined by taking
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a closed neighbourhood of x in its usual restricted way. The function 0(z)
has then a definite value at each point = of [a, b] and 0<0(z)<1.

It follows easily that if O(z)=0 at some point € [a, b], then z is a
NBV-w point of f(x), while if for a point z

0(z) == 0

then x is a BV-o point of f(x).

The purpose of the present paper is to study certain properties of the set
of BV-w points and also to establish certain properties of 6(z). Throughout
the paper the following notations will be used:

8, denotes the union of pairwise disjoint open intervals (a,, b;) in [a, b],
on each of which w(z) is constant;

8, = {a, by, @ty byy ..}
8, = 88;;

and
85 = 8S[a, b] — (8, + 8,).

Theorem 1. The function G(z) is lower semi-continuous in [a, b].
Proof. Let « be a point of the open interval (e, b) and & > 0 be arbitrary.
There exist two positive numbers 4, and J, such that

(2) B(oy 015 0y) > O(e) — & .
Choose two positive numbers §, and 6, such that
[z — 0,y &+ 8,]C (@ — 0yy cc 4 6,) .
Since
Voll; [0 — 0, @+ 8)) <V, (f5 e — 0y, e+ 84])
it follows from relation of the form (1) that,

(3) 6(w) > 0(=, 6'17 6;)>6(“; 01y 0,) .
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Combining (2) and (3) we see that for every point we (x— &,, -+ 4,),

O(x) > 0(er) — ¢ .
Hence 6(z) is lower semi-continuous at «, and so in (a, b). Similarly we can

show one sided lower semi-continuity of 6(z) at the end-points a and b.
This proves the theorem.

Theorem 2. If0(x)=1 for every we D, then f(x) is continuous on [a, b].

Proof. Let w,eD. Then
0(y) = 1

and so there exists a 0,> 0 such that f(») is BV-w in [m,— &y, @ - o).
Again 0(z,) = 1 implies that

;im Vw(f§ (%o — 01, @0 + 52]) =0
1—>0

Oy—>0

and so, for arbitrary & >0 there exist two positive numbers d; and 6§, with
0< 0, <8y, 0< 6, < &, such that

Vo (f; [0 — 0y, o+ 8,]) <&
Hence for any two points & #» of § with
B— 0 <E<a<n<a+0,, | —f@)|<e.
Letting & —2,— and 5 — - over the points of § we get
[fot-) — flmo—) | <e .
Since £> 0 is arbitrary,

Hawot) = flwo—) .

If at points of D we set
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then f(x) is continuous on [a, b]. This proves the theorem.

Theorem 3. If aed, is a limiting point of S, on both sides and if o is
a BY-w point of f(x), then 6(x)=1.
Proof. Since o is a BV-w point of j(x), there exists a 6 > 0 such that
fl@) is BV-w in [e— 8, a-+ 6]
Let
a(ty = V(f; [«— 6, t]), tela— 9, a1 0].

Then m(t) is continuous on §; ([3], Lemma 2.2).

Choose two positive numbers d, and J, such that the points «— 4§, and
o+ 0, belong to Syfe— 3, a- 6].

Then

Vo (f; [oe — 04y o+ 0,]) = (o ++ 8,) — 7w(ex — &) ([3], Lemma 2.1).

So,

1 1
L+ Vofslo—3d,8+6,)) 1+ a(a+ &) —a(a— &)

O(ce,y 0y, 0y) =

Letting 6, — 0 and d, >0 with a — 5, € 8;, o+ 6, §;, we get from the above,

O(e) = 1.
This completes the proof.

Theorem 4. If B denotes the set of BV-w points in S[a, b], then

|B|,=(L8) [ 6(») dw,

8 [a,b]

where | B, denotes w-mesure [4) of E and the integral is taken in Lebesgue-
Stieltjes sense ([4], [2]).

Proof. Since 6(z) is lower semi-continuous in [a, b], it is w-mesurable [4]
in [a, b]. Moreover, 6(x) is bounded on S[a,b] and so, O(z) is LEBESGUE-
STiELTIES integrable in S[a, b].

Again F is the set of points z in S8[a, b] for which

O(x) >0,

and so, the set ¥ is w-measurable.
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So,
(4) (L8) [ 0(w)dw = (LS) [ 0@ dw + (L8) [ (@) .

5ia,b} Slabl— 8

Let I denote the set of points of ES, which are limit points of ES, on both
sides. Since ES,— F is at most enumerable,

lESs!w = IF[w .
Now,

|8o],, =0, [8e],= 0.

o
Also,
b{z)y = 0 for ze Sfa, b] — B,
b(z)=1 for ze .

So, from (4) we get

(LS) f f(@)dw = (LS) [ O()dw + (LS) f 0(z) dew + (LS) f O(z)dw

3 [a,b] ES; ES, ES,
= (Z8) [ 0@)dew = (LS) [ O(w)do = |F|y = |BS,|n =B,

Theorem 5. If w(x) is strictly increasing and continuous in (a, B)C [a, b],
then the set of points in (o, f) of discontinuity of 0(w) is non-dense in [o, B,

Proof. Let 4 denote the set of points of discontinuity of 6(z) in («, f)
and let =, € (o, f) be a BV-w point of f(z). By Theorem 3,

O{m) =1 .

Since f(x) is lower semi-continuous and 0<6(z)<1, it follows that O(x) is con-
tinuous at x,. Hence each point of 4 is a NBV-w point of f(=).

If possible, suppose A is not non-dense in [e, f]. Then 4 is everywhere
dense in an interval [«', f']cC [, f]. Denote Af«', B’} by A,. Since the set
of NBV-w points of f(x) is closed, it follows that A4, is a closed set. Again
since A, is everywhere dense in [o, §'], every point of [«, '] is a NBV-w
point of f(x).
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So,
O(z) =0 for ze o, 5'].

Hence 0(z) is continuous in (o, ') which contradicts the definition of A and
completes the proof of the theorem.

I am grateful to Dr. M. C. CHAKRABARTY for his kind help and suggestions
in the preparation of the paper.
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