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MArTHA M. MATTAMAL (%)

On the Space
of Lebesgue-Bochner Summable Functions

Generated by a Volume. (**)

In [1] is presented an approach to the theory of LERESGUE-BOCHNER sum-
mable functions L(v, Y), where » is the volume generating the integral and ¥
the BANACH space in which the functions have values. We show in this paper
that the space L{v, Y) is the closure, in a certain space, of the set of Y-valued
simple functions over the prering on which the volume is defined.

We point out that M. H. SToNE [7] used the notion of closure to define
the space of real valued summable functions.

The terminology wused in this paper is that of [5] and [6], where the
LepeseUE integral is defined axiomatically and representations are given for
the integral and its completion by means of the volume generated by the
integral.

We first state the following theorems of [5], as they will be frequently
used in what follows:

Theorem A. Let [ be a complete LEBESGUE integral and » the volume
generated by [. Then D(f) =.L(v, R) and [f=[fdw for all feD(J).

Theorem B. Let [ be a LEBESGUE integral and » the volume generated
by J. Let m be the measure with smallest domain extending . Then D([) =
= L(m, B) = L(v, B) "\ M(m, R) and [f=[fdv=[fdm for all feD({).

In [5] is also shown the following result.

(*) Indirizzo: Department of Mathematics, Howard University, Washington, D.C.
20001, U.S.A..
(**) Ricevuto: 7-I11-1973.



198 M. M. MATTAMAL 23

Theorem C. Let [ be a complete LEBESGUE integral and v the volume
generated by the integral. Then the family of null sets generated by [ coin-
cides with the family of null sets generated by v.

We also need the following result of [6].

Theorem D. Let [ be a LEBESGUE integral with domain D(f) over X
and [, its completion with domain D(f,) over X. Then a condition C(x) holds
J-almost everywhere on X if and only if C(x) holds [,-almost everywhere on X.

§ 1. - The space S(f, X).

Let [ be a LEBESGUE integral, with domain D([), over an abstract set X;
that is, [ is a countably additive positive linear functional on the linear lat-
tice D([) of real valued functions satisfying the STONE condition over X
(see [5]). We denote by S(f, Y) the space of all functions from X into
a BaNacH space (Y, |-]) such that for feS(f, ¥) there exists a function
g€ D(f) with the property that |f(2)|<g(z) [-a.e. On S(f, Y) we define the
functional

Il =int{fg: |f(@)|<g(@) [-a.e.,ge(D)}.

Proposition 1. Let [ be s LEBESGUE integral and [, its completion.
Then the space S(f, ¥) coincides with the space S(f., ¥) and |[f], = |f],,
for all fe8(f, X).

Proof. Obviously, since [, is an extension of [, S([, ¥)cS8([., ¥). Now,
take any f € S([,, ¥). Then there exists a function g € D([,) such that |f(z)]|<
<g(x) f[-a.e. By definition of the completion, there exists & € D(f) such that
g(@) = h(z) [-a.e. This implies, by Theorem D, that [f(z)|<k(x) f-a.e. This
proves 8(f., ¥)c8({, ).

Since for any geD(f,) such that |[f(z)|<g(®) [,a.e. we have ke D([) such
that |f(x)|<Mx) [-a.e. and [,g=/[h, it is clear that the two sets

{g: f@)|<g®) [-a.e., geD([)}

and
{fh: |f(@)| <h(@) [-a.e., heD())}

coincide and therefore [f|; = |f|; for feS([., ¥).
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Proposition 2. The space (8(J, ¥), || |;) is a complete semi-normed
space.

Proof. From the fact that D(f) is a linear space and the [-null sets
form a ring it is easy to see that S([, X¥) is a linear space.

Since [ is a positive functional, [f];>0 for any feS([,X). If f=0,
then |f(z)|<0 everywhere and therefore [f|,=0. For f,,f.€8(]f, ¥), the
triangle inequality follows from the fact that for ¢> 0 there exist g,e.D(])
such that |f,(2)|<g.(2) [-a.e. and [g;<|f;|;+ /2 for i=1,2.

To prove the inequality |k|[f] < |kf], for %+ 0, we notice that for-
ge D(J) such that |kf|<g [-a.e. we have |f|<(1/|k|)g [-a.e. and therefore,
[E1]fl;<Jg. The desired inequality is obtained by taking infemum over all
such functions g. The inequality in the other direction can be proven simil-
arly.

We shall now use Proposition 1 and establish the completeness of the semi-
normed space (S(f., ¥), || |;). For the sake of convenience we shall denote

the completion [, of [ by J. Let f,e8(J, Y) such that the series > |f.l,

n=1
=3

converges. We shall show that the series » f, converges in the space 8(J, Y).

Nl
There exist g,e D(J) such that |f.(®)|<g.{z) for v¢4,, where 4, is a
J-null set, and Jg,<< |f.], + 1/2». Since J is complete, by Theorem A,
g. € L(v, R) and [g,dv = Jg,, where v is the volume generated by J.

The absolute convergence of the series » g, in the space L(v, R) implies,

n=1

by Lemma 1 of [3], that there exists ge L(», R) such that > [g,dv = [gdv.

n=1

and > g.(w) = g(z) for » ¢ 4,, where 4, is a v-null set.
n=1

By Theorem C, 4, is a J-null set and therefore for any « not in the J-null

© ©w
set A = {J4, the series > f.(») converges absolutely and hence converges in
fe=Q n=1

the BANACH space Y.
Define a function f from X into Y by

w0

A
fa) = nzlfn(w) for e A,

0 for xe A .

For w¢ 4, |f(z)|<yglz), geD(J) and therefore feS(J, ¥). Moreover, for
w¢d,

[f(@) — (i 4 oo 4+ f) (@) [ < 2 gul@)

n>k
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and

J (3 ¢.) = f;cg,,d’vx g—g—...—g)dv=3 [g, dv.

n>k o n>k

As k— oo, the right hand side of the equation goes to 0 and hence |f—
—(fi+ -+ 1) ;=0

Proposition 3. A function f: X — ¥ belongs to 8(f, ¥) and [f|;=0
if and only if f(») =0 [-a.e.

Proof. It is clear that if f(z)=0 [-a.., then feS([,Y) and |f|, =0

Assume that fe8(f, Y) and |f|;=0. If J denotes the completion of [,
then fe8(J, ¥) and |f|, = 0. There exist g,eD(J) such that Jg, =0 and
[f(#) | < gu(@) for x ¢ A,, where 4, is a J-null set. By Theorem A Jg, = [g,do,
where v is the volume generated by J, and therefore, by Theorem 2 of [1],
there exists a subsequence G, of g, which converges to zero for » ¢ 4,, where
A, is a v-null set.

J being complete, by Theorem C, 4, is a J-null set. For # not in the
J-null set 4 = U A4, |f@) |<9n(2) and g, (@) —0. This implies that f(z) =0

ne=0

for x¢ A. It follows from Theorem D that f(x)=0 [-a.e.

Proposition 4. Let f, be a sequence of functions in S(f, ¥) and f a
function from X into Y. Then feS(f, ¥) and |f,—f|;—0 if and only if
f» is a CATCHY sequence in S(f, ¥) and there exists a subsequence fu, Of fa
such that f, (¢) converges to f(») [-a.e.

Proof. Let feS(f, Y) and |f,—f];~0. Since ||, is a semi-norm, f, is
a CAucHY sequence in 8(f, Y). If J is the completion of [, then [f,—f|l,—0.

Further, there exist g, D(J) such that

[fa(@) — f(@) | <gulw)  for w¢d,,
where 4, is a J-null set, and
Jgu < lfa—fl,+ 1/n.
Since J is complete, by Theorem A, [g,dv — 0, where » is the volume

generated by J. Then, by Theorem 2 of [1], there exists a subsequence Y,
of g, such that g, (#) 0 for @ ¢ A,, where 4, is a v-null set and hence a
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J-null set. This implies that f,,k(a;) converges to f(x) for any z not in the

J-null set JA4,. By Theorem D, we see that f,,k(w) converges to f(x) [-a.e.
ne=g

For the proof in the other direction, assume that f, is a CAUCHY sequence
in 8(f, ¥Y) and there exists a subsequence f,,k such that f,,k(x) converges to
f(w) for & ¢ A, where A is a [-null set. By the completeness of S(f, ¥), there
exists ge8(f, ¥) such that f, converges to g. By the first part of this propos-
ition there exists a subsequence of f, converging pointwise to g on = ¢ B,
where B is a [-null set. This implies that f(z) = g(#) for & not in the [-null
set AN B.

By the previous proposition f—ge S(f, ¥) and |f—g¢| ;= 0. This implies
that feS(f, ¥) and [[f,—f[;—0.

§ 2. - The space of Lebesgue-Bochner summable functions.

Lemma. Let [ be a Lebesgue integral and w the volume generated by |
on the ring W of summable sets. If ¥ is a Banach space, then the set S(W, X)
of Y-valued simple functions is a subset of the space S(J, ¥) and the semi-norms
coincide on 8(W, X), that is |s|| = |s|; for se S(W, ).

Proof. Let seS8(W,Y). Then,

s=1¢, + ...+ YnCy,

where y,€Y and 4, W, A, disjoint.
Let [ be defined on D([) over the set X.
For ze X, |s(x)|=|s|»|, where

ls]=lyuley, + ... +1yale,, e D)) .
Therefore se S(f, X).

Since

ls|e{g: Is(@)|<g(@) [-a.e., ge D(])},
we see that [s|;=[|s| and, by Theorem B, [|s|={|s|dw = |s] .

Theorem 1. Let Y be a Banach space and L(v, Y) the space of X-valued
Lebesgue-Bochner summable functions generated by a volume space (X, V, v).
Define a Lebesgue integral [ by D([) = L(v, R) and [f=[fdv. Then L(v, XY)
is the closure in S(f, Y) of the set of Y-valued simple functions S(V, X) over the
prering V.
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Proof. The functional [ defined on D(f)= L(v, B) by [f=[fdv for
fe D(f) is a complete LEBESGUE integral (see Example 5, [5]). Let w be the
volume generated by the integral [ over the ring W of summable sets (see
Theorem 1, [5]).

According to Theorem 1 of [4], L(v, ¥) = L(w, Y) and |[f],= |f]., for all
fe L(v, ¥) and the null sets generated by the two volumes v and w coincide.
Notice that Vc W, 8(V, X¥)c8(W, ¥)c L{v, ¥) and |g|,=g|. for ge 8(V, X).

Let fe L(v, Y¥). Then by the definition of the space L(v, ¥), there exists
a basic sequence s,eS(V, Y) such that s.(#) converges to f(z) v-a.e. By
Lemma 4 of[1] |s,—f|, converges to zero which implies, by the above lemma,
that {s,} is a CAucHY sequence in S(f, ¥). Since [ is a complete LEBESGUE
integral and w the volume generated by it, by Theorem C, s,(z) converges
to f(#) [-a.e. It follows from Proposition 4 that fe S(f, ¥) and |s,—f] ; con-
verges to zero. But

lsnly = lsale and  fsufo = 1fl.

This shows that [f{, = [f]..

Now take any fe S(f, Y) such that there exists a sequence s, e S(V, Y)
with [s, —f|; converging to zero. By Proposition 4, {s,} is a CAUCHY sequence
in 8(f, ¥) and there exists a subsequence $u, Of s, such that $a, () converges
to f(z) [-a.e.

Since S(V, Y)c S(W, Y), the above lemma implies that s, is a CAUCHY
sequence in S(W, ¥) and, by Theorem C, 8$a, () converges to f(z) w-a.e. It
follows from Theorem 2 of [1] that fe L(w, ¥) and therefore f e L(v, Y).

The proof of the theorem is now complete.

We shall state below a theorem whose proof follows from the proof of the
above theorem and from Theorem D above and Lemma 2 of [5].

Theorem 2. Let [ be a Lebesgue integral and w the volume generated
by [ on the ring W of summable sets. If ¥ is « Banach space, then L(w, Y)
is the closure in S(f, Y) of the set S(W, Y) of simple functions.
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