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S. K. SINGH ana H. S. GOPALAKRISHNA (¥)

Applications of Proximate Order. (**)

1. - Preliminary remarks.

Let G(r) be a positive function defined for all »>7, and let

. log G(v)
lim s =
r1—>oa up log r

=g, Where 0<p<oo.

Then it is possible to determine a continuous function p(r) defined for r>7,
with the following properties:

(i) Iim o(r) = o;
(i) o(r) is differentiable for r>r, except at isolated points, at which
o' (r—0) and p'(r-- 0) exist;
(iii) lim (rlogr)p'(r)= 0 where o'(r) can be interpreted as either o’(r— 0)

(=S

or go'(r-+ 0) when these are unequal;
(iv) G{r) < ¥ for r>1y;

(v) G(r) =7 for a sequence {r,} of values of 7 increasing to oo with n.

(*) Indirizzo degli Autori: Mathematics Department, University of Missouri,
Kansas City, Kansas City, Missouri 64110, U.S.A..
(**) Ricevuto: 11-1-1971.
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See LevIN ([2], p. 35).
Similarly, if

log G
lim inf 2 (:):1, where 0< A< oo,

rere log

then it is possible to determine a continuous function A(r) defined for >,
with the following properties:

(i) im A(r) = 4
(ii) A{»r) is differentiable for r>r, except at isolated points, at which
A'{r—0) and A'(r -+ 0) exist;
(iii) lim (rlogr)A'(#) = 0 where A'(») can be interpreted as either i'(r — 0)

>
or A'(r -+ 0) when these are unequal;

(iv) G(#) > for r>1;

(v) G(r) =" for a sequence {r,} of values of » increasing to oo with n.

See S. M. Sza=[3].

o{r) is called a proximate order relative to G(r) and A(r) is called a lower
proximate order relative to G(r).

‘We now show that the funections p(r) and A(r), with the above properties,
exist even when o=0 or 1= 0 respectively. Suppose p =0 so0 that
lim (log G(r)/logr) = 0. Then lim (log (rG(r))/logr) = 1. Hence there exists a

e o r->c0

proximate order g,(r) relative to »G(r).

Define p(r) = g,(r) —1, then p(r) =0 as r-— co since g,{r) -1, and
rlogro(r) = rlogre,(r) = 0 as r— co. Also rG(r)<r®® so that G(r)<ra!=
=72 for r>7, and rG(r) =27 so that G(r) =1*" for a sequence {r,} of
values of r, increasing to oo with n.

The existence of A(r), when 1=0, follows similarly. For, when A=0,
lim inf (log G(r)/logr) = 0 so that lim inf (log (rG(#))/logr) =1 and we can de-
r— >0
fine A{r) = A, (r) —1 where () is a lower proximate order relative to rG(r).

In the case p>0, it is known that (kr)2* 7~k a5 r — co uniformly
in k& for 0 <a<k<b< co. This holds when p =0 also, for, in this case if
¢:(r) is a proximate order relative to rG@(r) and o) = g(r) —1, then
(kr)e®? ~ Jye® a5 7 — oo uniformly in %k for 0<a<k<b< co. Hence
(k)= o p@a0=1 o (Jp)e®n L k09 a5 p —> oo uniformly in k for 0 < a<k<
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<b< oo, since p=0. Similarly if A(r) is a lower proximate order relative
to @(r), with 0< A< oo, then (kr)**”~Fk**” as r— co uniformly in & for
0<a<<k<b<< co.

Again, if o> 0, it is known that

r

o) -k

1eO—F Ao ——————— as r—+ oo,
—k4+po-+1
7
for all k<p--1, and

~ yolr) —k+1

{ T L | — as r —> oo,
b—p—1

for all k> p -+ 1.

‘We now show, by elementary proofs, that, if I is a positive constant, then

ir

lg-.l;+l
(8) f A0 Qe ey el as 7 = oo,
o—Fk

o

for all k<p-+1, and

=]

- Je-%+1 ,
() L s R as 7 — oo,

ir

for all 2> p+ 1.

Let k<<p-1. Then po(#)—k+1—>p—k-+1>0 as r->co. Hence
y@N=EH o5 as 7> co. Hence, by L’Hospital’s rule,

ir

4 r
(o—k + 1) — f 10(0-% d¢
dr
= lim Fl fo ’
—e pel)E41 e le-k+l — (po()-k+1)
e—F i1 ar

ir
| wetd-+ qg

To
le-k+1

1) lim

r—>
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provided the latter limit exists. But
ir
d
(o—% + 1)— | teld-% d¢
dr
Ty -

(o—k+ 1) l(lr)@(lr)-k
T Je-k+1 po() -k (rlog rg’ (v) + o(r) — kb + 1)

Jo—-F+1 E (relr)=~F+1)
dr

(o—k -+ 1) le-k+1 pelr)-k
T leEn -k (rlogrg’ (1) + o(r) — K+ 1)

as r— oo,

->1 as r—» oo since p(r) —>p and rlogre'(r)—0 as r — co. Hence (8) fol-
lows from (1).
Let k>p-+1. Then o(r)—k—p—k<—1, as r— co. Hence [i*? *ads

is convergent. So,

| a0 as 7 — oo.
ir

Also 787k 0 ag r — oo, since g+ 1 —k< 0.

Hence, again, by L Hospital’s rule,

L
Fte(t)—k de (b—e—=1 dr f wltir e
. ir 12 ir
(2) lim e = lim 3
rre T ek r® je-k+l (,rg(r)_lu-])
k—o—1 dr
provided the latter limit exists.
Now,
[ o ir
4 fela—* dt = 4 e~k d¢ — | ge—E g
dr dr
ir o [
—_ l(l,,.)g(zr:—kN — Jek+1 polr)—r as 7 — oo .

d
(k—o—1) i f reld)-x q¢
Tlr — (b — g —1) le~t+L pol)-E

T Je-ber pel-k (rlogro’(r) + o(r)—k+ 1)’

Jo-k+1 _9_ (9-@(7)—k+1)
dr

(a8 7 — o0) 1 as r— co. Hence (y) follows from (2).
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It is easily seen from the above proof that (B) and (y) also hold if o(r) is
replaced by A(r) and ¢ is replaced by A.

When o> 0, 72 is increasing for all » sufficiently large, since it is easily
seen that d/dr(r®”)> 0. However, this may no longer be true when p = 0.

2. = An application to entire functions.

‘We now prove:

Theorem 1. If f is a non-constant entire function of finite lower order A
and 1 18 a constant >1, then

.. . log M(lr, ) A—1 4 1+ 22 Al A
() RS T N {l FI—vit /12} {«/1 T 12—1} ’
if >0, and
(4) lim inf log (i, /) =1,
r> 0 (7, )
if 2=0.

Proof. Since
log log M(r,
r>o logr

there exists a lower proximate order A(r) relative to log M(r,f). Let 0<<k<<1.

Then, for r> 0,
7+ kr 14+ %

log M(kr, f)< 7,’:};;_1’("', f)= mT(T,f)-

So,

k 11—k
T log M(kr, f)> 7% (ForryXen) for r>7n, .

T(, ) > §

1—k
~ 1T Al as r— oo,

1—F%
14k
__1———k
_1+7c

1
B 7 (L)X as r— oo,
NG
(7) log M(lr, f)
for a sequence of values of 7 tending to oo.

10
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Hence,

lim su T(z, f) >1-k EY*
(5) o W e ) T 1w\

If 1= 0, this gives

_ T(r, f) 1—F%
ms > .
Lim sup log M(nf)~ 15 %

Since this holds for all k, 0 < k<1, letting & — 0 we obtain

. Tr,
S S W)

Since lim sup (T'(r, f)/log M (Ir, f))<1, because 1>1, we obtain (4). If 1> 0,

then the right member of (5) is a maximum when %= (v1+4 A22—1)/2. Sub-
stituting this value of ¥ in (5), we obtain (3).

Corollary 1.1. If f is an entire function of finite order and lower order
zero and 1 is a constant >1, then

(6) lim sup

Proof. Since f is of finite order, we have

. T(r, 1)
Hm sup 7 <t

(M

Also, the lower order of f'= the lower order of f which equals 0. Hence,
by Theorem 1,

.. . log M(lnf’)ﬂ_ .. logM(lr,j)__
®) it ey Ly hminfe o=t

Further, since f is of finite order,

©) log M(r, f) ~log Mr, '), as r— oo.
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Hence by (8) and (9),

[ T () .. T, ) log M(lr, ) log M(r, f)
S gy T LS {log M. 1) Tog M(ir.f) L0, f) }
10) {1 _ .. Ty .. og M, f) . log M, f)
> lim sup s 7y B it e
L = 1,

(6) follows from (7) and (10).

3. - Applications in value distribution theory.

Let ¢(r) be a positive, non-decreasing function defined for »>1 andlet ¢
be integrable on {1,r} for all »r>1.
Let

. 1 '
Lim sup 08 #(7)
ogr

r—> 0 1 >

=p< 0.

@

Let I be a constant >p and Q) = rf(p(t)/t*+1)dst. We note that

[(p()[t+1) dt < oo, for, if e>>0 is sufficiently small, then (@(f)/1H) < (12F°/t+2)

1
for all ¢ sufficiently large and [+ 1—p —e> 1.
Let

r

D(r) = {%t) dit .

17

Then @(r) is an increasing function and sinee ¢ is inereasing, it follows that

log () _

) log @(7) .
1 povd
im sup = lim sup Tog 7

r—re I gr r—>

Let

-]

Plr)y = ¢t [?—g-)dt.

i+l

™
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‘We have the following
Lemma 1. (i)

Lo Q) 1
() S 7
N .
(12) e T

(ii) If k>0, then

Qkr) ke
1 n—f \
(13) r}-]i’:loo @(7) l—o
and
.. o Plr) ke
a4 e TR
(iii)
Q() 4
liminf —— < ——
(15) e B ST
and
Q()
(16) A ) <

Proof. (i) Since ¢ is increasing, we have

Y=t | 2 L oa =0
Q(?)-oljt ftmdt .

Hence Q(r)/p(r)>1/l, which proves (11).
The proof of (12) is similar.

(if) We have

oo .

log p(r)
gr

>0 1
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Hence there exists a proximate order o(r) relative to ¢(r). For all » sufficiently
large, we then have,

[--]

Qkr) = (kr)? f— < klylf’te(!)—l—l di~

kr

Je-1 yelrd-t
Nkl?‘l"“—‘l-:T as 1 —> oo, by (Y).

Hence

Q(kr) < ke .
relr) =p__ 0

17) lim sup

r—>o

Since 7" = @(r) for a sequence of values of » tending to infinity, we obtain (13).
The proof of (14) is similar, for, if o(r) is & proximate order relative to @(r),
we obfain, in place of (17),

. Pkr) ke
(18) lm sup 20 =< 7,

r—>0o

(i)

0
[ e

r

s

upon integrating by parts, noting that D@)/i*— 0 as {— oo since [> g.
Thus,

(19) Qr) = — D(r) + 1P(r)
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Hence,

liminf Q—(—Q == | lim inf F—(—T—) — 1
D(r) (7)

r—reo (2 r—>0

! 1
l—op ’

From (19), we have

Q) _,_ 2

P PO’
80,
Lo Q) .
zliximf% =1— }1_1)1;8111)
<l—(—0),

[10]

by (14), taking k=1.

which proves (15).

by (14}, taking k= 1.

=g, (which proves (16).

Corollary. If 0=0 and k>1, then

o) o g = 1
) i ot 505 = 1
(22) lim inf -g%; =0,
(23) Eznminf %ﬁ—:—; =0.

Proof. Since ¢ is non-decreasing and k>1, we have

Qkr) Qkr)
= .
@(r) o (kr)
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Hence
tim int 2% < Jim ing @0 S 1
>0 o(7) r—>c0 o(kr) l

by (11). (20) now follows from (13), since ¢ = 0. (21) follows similarly while
(22) and (23) are immediate consequences of (15) and (16) respectively.

In what follows, we denote by %, the set of all (finite) complex numbers
and by %, the extended complex plane consisting of all (finite) complex numbers
and co. Thus @ = % U {co}.

‘We now deduce some simple results about entire and meromorphic func-

a
tions. Lebt f be a meromorphic function of order 0. Let n(r) = > n(r, a),
i=1
where a,, @, ..., 4, €% and n(r, a,;) # 0 for at least one i(l<i<q).
Let
t) — n(0
N@) = f ) — 0 t”( ) 4 4 n(0) log 7.
0

Similarly, let a(r) =

i

n(r, @;), where n(r, a;) # 0 for at least one 4, 1<i<yq

i

and

N = f M dt + 7(0) logr .

as usual, #(r, a) = the number of distinet zeros of f—a, in [2]| <7, for each
a€%. Then we have the following

Theorem 2. (i)

2 . - r —_
@) fim nt = — = 0
fﬁ_(.t.) dt
12
r—> N(t)

{2
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(iiy If k>1, then

™0 4,
tz
N 1
(26) ],J_I,n wmf () TR
v
N(t) a
t? 1
: : kr —
e G T

with corresponding results obtained by replacing n by % and N by N everywhere.

Note. (24), for an entire function of order 0, is due to LITTLEWOOD.
Our proof is different.

Proof. Since f is of order zero,

lim log n(r) — lim logA(r) im Bg__lm — Iim log N(r) _

r>wo lOgT rsow lOgT r>o lOg7T rso lOg

Theorem 2 now follows from the preceding corollary, taking ¢(r) = n(r),
and I=1. Similarly, taking ¢(r) = 7(r) and I = 1, we obtain the correspond-
ing results with # and N in place of » and N respectively.

Let f be a non-constant meromorphie function of order g and a, b be distinct
elements of 4. Let n(r) = n(r, a) + n(r, b) and

@0

Nu) = f "(”—:"@ dt + n(0) logr .
[

It is known that, if 0 < p <1,

lim inf 2020 1T
> N("') SIn HQ

and if p =0,

R A C 5!
<
P Sy =1

‘We now use the technique of proximate orders to prove
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Theorem 3. Let &k be a positive constant.
(i) If 0<p<1, then

(18) lim jng TEnD 1k

r>co n(r) S gin o’
.. LT, ) IToke
(29) {.I_I_zl,,olnf N(r) < sin IIp

(ii) If o =0, then

(30) lim inf Ler, 1)

- N()

Proof. (i) Let 0< p<<1l. Without loss of generality, we may assume
that f(0) =1, a =0 and b= oco. Since 0 < ¢< 1, we then have

«©

(31) T(r, f) < r f

0

n(t)
it 4+ 7)

Again, since g<<1, f has at most one exceptional value in the sense of
BorEeL and so,

log n(7) log n{r, a)

log n(r, b)

lim sup > Max {lim sup , lim su

r—> lo o log r o logr

on the other hand,

2r
1
N@r) > f ﬁim)dt>n(9~) log 2

and so,
hence
lim sup log n(_r) =< lim sup log T(r, ) _

r—>o og 7 r—® log »
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Thus
. log n(7)
lim =
rl_msup log r 0
Hence,
. log N(»)
lim = =
rl.msup logr e

Let p(r) be a proximate order relative to n(r) so that e(r)—p as r— oo
and n(r)<r®” for r>a certain »,. Let 6, v be positive numbers, with § < ».
Then, for » sufficiently large, we have, from (31),

@

: . n(t) N
T(kr, )< ks ft(t o =
0
o n(t) n(t) n(t)
(32) _Mf 4t -+ ko) -k ft(t—{—])dJr f H—h)
1]
-k ft(t + kr)
Now,
’ n(t) rt'fn(t) ron(t)
d < * —_— f—vd —_— el
(33) Ty f T df < kr f o ds f ; dt = 0(1)
(i} o 1]
= 0(,'.9(1-)) ’
since o> 0 and p(r) = as r—> oo,
Again,
kOr kér kgr
| i | MW [ gy
Jowt k) T ther -

kér

e Se yolr)
< f‘“”’ld’fNG : as 7 — oo, by (B).
P ;

To



(34)

Further,

kvr

o f—”’@-— A<
i+ k)

kor

14
(e relr)

w(l + u) uniformly for d<u<v),
[
v
= gpelr) Le ue? du
J 1+
s
80,
kyr
t
o | 0 g
t(t-kr) e
1- Lo < 0
(35) '1_131 SUp ——— <k T
)
Finally,
[4 t
Ter _mMh di<< br ) dt<kr | tet—2 dt~
] HE k) A :
kve ky.r Eyvr
Tor(fov)e— efr)-1
ke »pe-1 Tg(r)
1—op
Therefore,
’ ¢
rJ t(tqi:-)l ) dit
T
e po—1
: kyr
) limsup 24— =

APPLICATIONS OF PROXIMATE ORDER

kor

Ter I.—lz—'—(Ldt
J o+ kr)

I 4 e ge

1 Su < .

e T ret T e
Ekvr 4

108 Terw)etery)
m-f_—.—-«dt:fﬂ-—du,
i+ kr) w(l + )

a

kdr

as 7 —> oo (since (kru)e®™ ~ (lu)e yet”

as #—> oo,

139

putting t = kru,

as r— oo

by (v),
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Using (33), (34), (85) and (36), it follows, from (32), that

. T(kr, ke oe
11:1:115111)—(;Q:r—)f-2 < — - ke
e

r—>0©

J

v

ke pe-1

l—0p ’

ye—1

1 4w

du -+

Since » and ¢ are arbitrary positive numbers, with 6 < v, letting 6 -0 and

¥ = oo, We obtain, since 0 < p <1,

. Tr, 1)
i sup £ <
0

ue-1

f Q
”y
14w

7

du .
sin ITp

ke

since 72 = n(r) for a sequence of values of r tending to infinity, it follows

that
. T(kr, f) Ike
gnisup Ta(r) < sin I7g’
which proves (28). From (31), we have
() 1 N@)
37 T <r [0 T,
0 0
since [N (¢)/(t+ r)]—0 as ¢ — oo, for,
¥
1imSupl°f‘t(t) —o<1.
t—>

Now, let ¢(r) be a proximate order relative to N(r) so that g(r) —>p as r— oo
and N(r)<#®” for r>a certain r,. As before, if d, » are positive numbers,
with 6 <7, we have, for sufficiently large,

r ©

Nt
Tk, f)<lor f (TJ;%;)?)E (from (37)),
To ° kér kyr
N0 T ¥
0 ro kor
N(t)
+ krj @&+ kry2

kvr
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We have

TN N(t
/- << e .
Mf(t kr)zdt_lw 2 = fN(t (1) as r-> co
0 [}

Treating the other integrals in (38) as before, we obtain, from (38),

kd

T(kr, ) ke e ue e ye-1
— + ke

lim sup

r—>

ey < Y du—[—l_g.

Letting 6 — 0 and » — oo, we obtain

o«

T(kr, f) T f ue . IIp

lim sup g =

r—>%

(1 4 w)® du =" sinITp
[1]

Since 7% = N(r) for a sequence of values of r tending to infinity, we get

T, f) I
1 < ke
ity <M sne

which proves (29).

(ii) Suppose o =0. If f is a rational function, then at least one of
N(r, a), N(r,b) is asymptotic to T'(r,f) and (30) holds trivially. Suppose f is
transcendental. We have, from (31), assuming f(0) =1, ¢ =0, b = oo,

©

T(kr, fy<kbr f

1]

. n(t)

o ft—{—lm) Pk ft(t—}—k b<
( @ o, _

<kr fmdt—}—l f—;z—dt—

T

n(t)
it + k)

= N(r) + kr —(—t—)dt

r
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f.__at

<l+k, lminf—-—- o =1, by (24).

T(kr, )

lim inf
S

r—ro

This proves (30). For an alternative proof of (30), when & =1, using PoLYA
peaks, see HayMman ([1], p. 103).

In what follows, if f is & meromorphic function, we shall denote, by n(r, g, f),
the number of zeros of f—a in |z|<r, for each a€@. As usual, if @ = oo,
by a zero of f—a we mean a pole of f—a.

Also

*

N('r,a,f):f it @ ) — - m0. &/ dt -+ n(0, a, f) logr.

L]

In a particular context where we are dealing with only one meromorphic
function f, we sometimes write n(r, @) and N(r, a) for u(r a, f) and N(r, a,f)
respectively and n(r, co) and N(r, co) are usually written as n(r, f) and N(r, f)
respectively.

Corollary 3.1. Let | be a meromorphic funciion of order p and let ¢,, ¢,
be distinct meromorphic functions such that T(r, ;) = o(T'(r,f)) as r—> co for

1=1,2. Let k be a constant >1.

(i) If 0<p<1,

o T(ir, f)

(39) o T—g0) + i o f—g) " sinIlg
o T(r, ) e

(40) ;l-l-ilfnlnf -Z\T(T, 0, f_ gl) —+ -Z\T(/'.s o, f - g2) \ke sin HQ '

(ii) If o =10, then, for all k>0,

. L(ker, 1)
lim inf <1.
(41) r1~—>m N(r,0,f—gy) + N(r,0,]—gs)

Note. g, or g, may be constant and either g, or g, may be identically
equal to oo also.
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Proof. Without loss of generality, we may assume that f is transcen-
dental, for, in (i), ¢> 0 and so f is necessarily transcendental, whereas, in (ii),
if f were a rational function, then ¢,, g, would be constants and so (41) would
reduce to (30).

Define

; _ 1(2) — g4(2)
O = e e

Sinee T'(r, g;) = o(T(r,f)) as r—> oo, i =1,2, we have T(r,f—g,)~T(,f)

as 7 —> oo,

Hence
I(ry g.—¢,) = O(T("', f))
= o(T(r, f—g.)) as r— 00, 1 =1,2.
Since
g2(2) — g4(2)
Iz =1 el
B =1 e s’
we have
T, F)y =T (9‘, g;:gg,) 4+ 01)~T (9', }—:1?) as » — oo,
2 2
~ T, f — g) as r—> oo,
NT(/",]‘) as 91— oo.

Thus T(r, F) ~T(r,f) a8 r—> co.
Hence the order of F' = the order of f which equals p.

(i) Let 0 << g<<1l. Suppose, first, that k> 1. Then, from (28) and (29)
applied to ¥, we have, since T'(kr, F') ~ T(kr, f),

.. T(kr, f) ITke
(42) e or T) + a(r, o, F) = sin Il
and
T(kr, IToke
(43) lim inf (. /) ¢

s N7, 0, F) - N(r, oo, F) " sinllp’

Now, since F(2) = (f(2) —g:(2))/(f(2) —g2()), We have n(r,o, F)<n(r, 0, —g,)+
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+ n(r, oo, g,) and n(r, co, F)<n(r, 0, f — g;) -+ n(r, oo, g,). Hence
(44) n(r, 0, F) + n(r, oo, Iy n(r, 0, f —¢,) +

+ n(r, f—g2) + n(r, 00, 41) + n(r, 09, G) -

Since &> 1, N(kr, oo, g;) + N(kr, oo, g2) < {n{r, o0, g;) + n(r, oo, g)}-logk.
Hence

1
n(r, oo, g;) -+ 01, oo, ga) < @ {T(l‘”'y g + T(Fr, gz)} =

= o(T(kr, 1)) as r—> co.
Hence, from (44),
. w7, 0, I) + n(r, oo, F) ) w(r, 0, f —g1) + n(r, 0, f—g5)
tim sup T(r, 1) < limsup T(ir, ) '

(39) now follows from (42).
Again, from (44),

N(r,0,F)+ N(r, 0o, )< N(r, 0, f—g:) + N{r, 0y f—¢e) + N (7, 00, ¢1) + N(r, oo, ga)
<N(ry0,f—g)+ N(r,0,f —g:) + T(r, g1) + T(r, g.)

:N(T’ 0, f_gl) -+ N(’I‘, 0, f—g2) + O(T(k’l‘, f)) y

since k> 1.
Hence
. N(r, 0, F) + N(, oo, F) s N(’r,o,f—g,)—I—N(?‘,o,f——gz)
lim su < lim su
. Tr, ) o (o, f)

(40) now follows from (43).
To prove (39) and (40) when k=1, we have, for k>1,

Tly
lim inf . 1) < limint Ttr, 1) <
> /"’(7.: 0, f'—gl) + ’)’b(’)', o, f""'g2) r—>o© 'n’(T’ o, f _gl) + ’l‘b(’l‘, 0, f'—gz)

< ITke
T sinITp
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Since this holds for all k> 1, we have, letting &k —1,

lim inf e 7 P
1T = 7L .
—w BT 0, f—g) + 0, 0, f—g,)  sinllg

Similarly

T(r, I
lim inf . /) < — e
>0 Z\T(T: 0, f—gl> + AT(T’ 0, f“ gz) sin H@

(41) follows gsimilarly from (30) applied to I
Corollary 3.2. Let f be a meromorphic function of order o.

(1) If 0< o<1 and k is a constant >1, then

. T(kr, f) _ 211le
(45) ilﬂ,mf n(r, 0, f—g)  sinllp

for every meromorphic function g, satisfying T(r, g) = o(T(r,f)) as r—> oo, with
at most one exception and

lim ing T(ler, f) _ 2IToke
(46) ,__ml N(r,o0, f—g) = sin ITp

for every meromorphic function g, satilfying T'(r, g) = o(T(r, 1)) as r— oo, with
at most one ewception.

(i) If o =10 and k>0, then

T(lor,
(47) lim inf —— 02 1) 2

7> AT(7‘, 05f—“g) =7

for every meromorphic function g, satisfying T(r, g) = o(T(r, ) as r— oo, with
at most one exception.

Proof. (i) Let 0<<p<1 and k>1. Suppose there exist two distinet
meromorphic functions g,, ¢., satisfying 7T'(r, g.) = o(T(r, f)) as r—oo for
1=1, 2, and such that

L T(kr, f) 21TTe
lim inf
Tl.m,l n(r, 0, f—g;)~ sin Ilp

for i=1,2.
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Then

. n(r, 0, f —gs) + n(r, 0, f~g,) . n(r, 0, f —q)
lim s < Hm sup ———="~

e T T, f) e Ty T

. n(r, 0, f—g,) sinlIlp sin ITp __sin Ilp
+ hmsup =0, oMk " Ike ke
hence
T(ker, f) ITke

lim inf >—
r—>® n(oh’ 0, f—' gl) + n(T: 0, f_ 92) s UQ ’

which contradicts (39). This proves (45).
(46) and (47) are proved similarly.

Theorem 4. Let f be a non-constant entire function of order o and let &
be a positive constant. Let a c¥.

(i) If 0<<p<<1, then

.. . log M(kr, ITke
lim inf 28 (r, 1) < —,
reroo n(r, a, f) sin ITp

.. JJdog Mkr, IToke
hmmeg, (’f)\ ‘gc s
r<—o "/-'\J (’)'! a’ f) s HQ

(i) If o =0, then

Jim ing 108 M7 /)

row  N(af) T

(iil) If =0 and k=1, then

. . o log M(kr, H
e

Proof. The proof of (i) and (ii) is analogous to that of Theorem 3, taking
b= co and noting that (31) and (37) are valid with T(r, f) replaced by
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log M(», f). If k>1, we have
N, a)y< T, )+ Oy < T (kr, fy 4 0(1)

<log M (kr, f) + O(1)

and so
N(r, a)

i AL N
W sup 1o ) <

>0

So, (iii) follows from (ii}.

Corollary 4.1. Let f be a non-constant entire function of order p and
let & be a positive constant. Let g be any entire function (including a polynomial
or a finite constant) such that log M(r, g) = o(log M(r, f)) as r — oo

(i) If 0<<p<<1, then

.. . log M(kr,f) ITke
lim inf < — ,
s BT 0, f—g) sin I1p

log M(kr, f) _ ITgke

lim inf < .
N(r,o0,f—g) ~ sinllp

r—

(i) If o =20, then

.., log M(kr, f)

(iii) If o =0, then

L log M(kr, f)
I e

for E>1.
Proof. Follows by applying Theorem 4 to the entire funection F(2) =
= f(2) — ¢(2), taking a = 0 and noting that log M(r, F) ~log M (r, f).

Theorem 5. Let f be a meromorphic function ol non-inieger order o > 0.
Let a, b be distinct clements of € and
r

n(r) = n(r, a, f) + n(r, b, f), N@) = J M)

0

dt + n(0) logr.
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If & is a positive constant, then

(47) lim inf = ”‘(’")f ) 1 B(o)
and
(48) lim int “(’f) <ok B(o)

with Ble) = ((¢+ 1) 4@)/((e —)g+ 1 — o)), where ¢=1[g] and A(g) =1 if
q=10; A(q) =22+ logg) if ¢>1.

Proof. Without loss of generality, assume that f(0) =1, a =0, b = oo,
Since p is not an integer, we have

lim sunp log n(r) — lim log N(» )
>0 1 I gr r—>0co o
We can express f(z) in the form
Py(#)
(49) ft2) = exp (Q(2)) 3 —

where @(2) is a polynomial of degree <g¢, Pi(z)= [ E(zla,, ), and P,(z)=
w

= ] B(#b,, q) where a, are the zeros and b, are the poles of j. Then

log M(r, exp[@(2)]) = O(rv),

log M(r, P) < A(q) (g + 1) {m f w0 ) 4y 1 e f n{ o /) dt},
0

{a+1 {a+2
T

w0

log M(r, Po) < A(q)(q +1) {w f Ml 20 1) gy 4 pana f t, oo, /) dt}.
I r

e+l 1a+2

(See HAYMAN, p. 27, (1.21)).
Hence

log M(7, exp [Q(2)]) + log M(r, P,) -+ log M(r, P,) < O(r?) +

(50) + Alg) q+1{ f%ﬁdt,f_ qﬂf?qh(ﬁdt}'
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From (49) and (50), we have,

[ T(hr, f)< T(kr, exp[Q()]) + T(kr, Py) + T(hr, P)+ O(1)<

<log M(kr, exp[Q(z)])+ log M(kr, P,) -+ log M(kr, Py)+ 0(1)<
(381) < i ®
<00 + A@g+ 1) {W j et Q1 Jost o f o ‘“}

. o kr

now let o(») be a proximate order relative to n(r) so that o(r) =g as r — oo
and n(r)<r?” for all #>r,. Since g is a non-integer, we have ¢ < o< q -+ 1
and hence O(r%) = o(r2") as r — oo.

From (51), for r sufficiently large, we have

r ro

kr

n{l n{t

T(kr, )< 0@ + A(g) (¢+ 1) { ke f ;l(z(—:_—i dt -+ ke f {q(Ti dt -
o To
(52) - 4 Jerrt g f “:q(—fzczt} -
kr

kr o

[ t
— 0(m) 4+ A(g) (g + 1) {kq Wf ?f—ﬁ df + T+ pars f%(;i dt} :

To kr ’

‘We have

kr kr
n(t .
Tea y.qf n(?) dt< ke qu gl —e—1 ¢ ~o
e+l

To To

Le-a polr)-a
~ Zcqwﬁ ag r — oo, by (B)

Te yo(®)

e—q
So,
kr

t
1 e f 2(t) &
t0+1
ke

Ty

(3) lim sup

r—>0 relr) e—dq )
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Also,
Jort1 patl f %(-—B di < kvt it Jtﬁ‘(‘)“““g at ~
k'r kr
) ) Je-a-1 poir)-a-1
~ I e (a8 r 0, By (1),
Ko relr)
“rrise
hence
w
2+l pa+l ﬂwt) di
{a+2
(54) lim s = <
5 im su )
o P yoln) o q -+ l—op

Using (53) and (54), we obtain, from (52),

e ke

(‘f
+
o—¢ q¢+1—o¢

lim sup

r—>

A(giqg + 1) { } = ke B(g) .

Since 72" = n(r) for a sequence of values of r tending to co, this yields (47).
‘We have

f (_ ‘ n(t) ) _1 at —
t t(I—i-l tq

N(r N(t) @ }

ta+1

N
— M) + g f 2 a

1]

(upon integrating by parts),

Similarly

potl [‘7:_«(_;(1 = — N(r) + (g -+ 1) rr+?

r
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noting that (N (?)/¢***) 0 as t— oo, since p < ¢+ 1. Hence, from (50),

(54)  Tlr, )< 007 + A(g)(g + 1) {qw f 20 4+ (g4 1w f Al u}

Now taking a proximate order g(r) relative to N(r) and proceeding as before,
we obfain (48).

Corollary 5.1. Let f be a meromorphic function of non-integer order
0> 0 and let g, g, be meromorphic functions (including constants finite or infinite)
such that T(r, g;) = o(T(r,f)) as r— oo, for i=1,2. If k is a constant >1,
then

lim inf Tk 1

<keB
P00 (1, 0, f —g3) + 07, 0, f —g,) (@)

and
. (T, f)
o o T— a0 + Nt o, T— 0

< ekeB(g) .

Proof. Follows by applying Theorem 5 to the funection

1(2) — g1(2)
) = 5
®) = fo 0@
and using an argument analogous to that of Corollary 3.1.
For an alternative proof of Corollary 5.1 with larger constants in the right
members of the inequalities see S. M. Smam[4].

Corollary 5.2. Let f be a meromorphic function of nonm-integer order
o and k>0. Then

() lim inf _ Tl g)

{4
it T — < 212 B(p)
for every meromorphic function g, satisfying T(r, g) = o(T(r, f)) as r— oo,
with at most one exception.

T .
(i) lim inf — 72 /) <20ke B(g)

r—>00 N(r, 0, f—g)

for every meromorphic functzon g, satisfying T(r, g) = o(T(r, f)) as r— oo with
at most one exception.
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Theorem 6. Let f be an entire function of non-integer order o> 0 and
let ac¥. If k is a positive constant, then

.. log M(kr, f) g
b it ) kB,
. log M(br, f)
P ey SO

where B(p) is as defined in Theorem 5.

Proof. The proof is analogous to that of Theorem 5, taking b= co
and noting that (51) and (54) are valid with Z'(r, f) replaced by logM(r, f).

Corollary 6.1. Let f be an entire function of non-integer order o> 0.
If & is a positive constant, then for every entire function g, (including a polynomial
or & finite constant), satisfying log M(r, g) = o(log M(r, f)) as r— oo,

.. o log M(kr,f)
T R
and

. log M(kr, f) ]
2 Ny f— gy~ 2P PO -

Lemma 2. Let ¢(r) be a positive function =1 defined for r>1 and suppose
p(r) is integrable on {1,r} for all »>1. Let limsup (logg(r)/logr) = p< oo
and %k be a positive constant. Then T

e p(ler)
i liminf ——< ke
(1) r—> p(r
@) If >0,
f ¢(t76t) &
k
lim infX——— < © .
r—>co @(r) e

Proof. Let o(r) be a proximate order relative to ¢(r) so that ¢(r)<#?®
for all r>a certain 7, and p(r) =~ ¢ as #— oco. Then, for all » sufficiently
large,

(For) < (Jor) 2" ~ Fe y0® as r— oo
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hence
. pkr)y
lim sup W < ke.

>

Since ¢(r) = 2™ for a sequence of values of » tending to oo, this implies (i).
Suppose ¢ > 0. We have, taking r, sufficiently large, for all »>1,

P

k o a ] k ’ ot)elke)
(55) f(p(tt)dt: f(’)(t”)dt—i— f"i(-tl) dt < O(1) + f(”)e Dt
1 1 r.," To

t

Now (kt)?"? ~e1e® ag ¢ oo. Also since [t*P~'dtis divergent it follows that

To

r r
To£)elt) relr)
f( )t dt ~ ke J feld-1 dg (a8 r — o0), ~ ke , (as » — o0) .
4

o To

Hence, from (55),

r

[
@(1) e

lim sup *

r—>®

< —.
rolr) o= 0

Since g(r) = 72" for a sequence of values of 7 tending to infinity, this implies (ii).
If f is meromorphic and a € C, as usual, we denote by n(r, «, f) the number
of distinet zeros of f—a in |2 |<» and

r

fﬁ(ts a, f)'—ﬁ(o’ e, f)
t

N, a,f) = dt +7(0, a, f) logr .

0

Theorem 7. Let { be a meromorphic function of finite order o> 0 and
k be a positive constant. Then

T 3
(56) lim inf_——gﬁg)— < E

r—>w R0, [—9) - e



154 S. K. SINGH and H. S. GOPALAKRISHNA. [30]

and

} L T )
1) A o

< 3ke,
for every meromorphic function g, satisfying T(r, g) = o(T(r, f)) as r— oo,
with at most two ewceptions in each of (56) and (7).

Note. (56) and (57) with #» and ¥ in place of # and N respectively are
mentioned by S. M. SHaH[4].

Proof. Without loss of generality, assume f(0) = 1. Suppose, if possible,
that (56) fails to hold for three distinet meromorphic functions g,, ¢ =1, 2 2, 3,
satistying Z'(r, g;) = o(ZL(r, f)) as r — oo, 1 =1, 2, 3. Choose the positive num-
ber [ such that

ﬁ(t, 0, j_gz) 4

(58) lim sup Tor, ) <l< vl 1 =1,2,8.
‘We can then choose 7, such that
3
> Ay 0, f—g:) < 3UT(r, ) for all r>r,.
f==]
Hence
3 = 3 t t, s ] T Yz
zN(T, 0,f— g;) = z "7'( 0, f u_{_ z 77'( 4 tf 9:)
- o
d T
0(1)+3zf U‘f” dt .
So,
T(kt, )
3
3 0,10 | Tt
lminf = < 3[liminf™
7> T(1'3 f) >0 T(/)', f)
]
3ZZG-
Q

by Lemma 2 (ii) taking @) = T(r, f).
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Hence, from (58),

3

EN(T5 o, f_..,gl)

(59) liminf&2———— <1
e Twh
On the other hand,
3 —
T@, fi< ZN(Ty Oyf—gi)'{"o(T("';f)) as 7 — oo,
=1

see HAYMAN ([2], p. 47, (2.11)). Hence

3
ZN_(T> o, ]‘_..gz)
(60) lim inf 2
e (. f)

>1

which contradicts (59). Thus (56) holds for every g, with at most two
exceptions.

Suppose, again, that (57) fails to hold for three distinet functions g,
satisfying T'(r, g;) = o(T'(r, f)) as r = oo, 1 =1,2,8. Then

Nz, 0, f~—g,) 1

. N(r,o,f—gs) 1 . 1.9.3.
}ﬂsup T, J) <3 for 1=1,2,3
Hence,
3
SHroi—g) |
. e
W sup = e
So,
3 _ 3 _
EAT(T’ O?f_gi) zN(Ty Ozfmgi) -
lminf Tt himsup T lim inf 201
r—>o T(r, ) - r—>® Lk, 1) r—>o T(r, )
1 .
< — ke, by Lemma 2(i) .

ke
=1.

This agains contradicts (60) and so (57) holds for every g, with at most two
exceptions.
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Corollary T7.1. Let f be a meromorphic function of finite order o> 0.
If k=1, then (56) and (57) hold simultancously for every meromorphic func-
tion g, satisfying T'(r, g) = o(T(r, ) as r— co, with at most two exceplions.

Proof. We have already seen that each of (56) and (57) holds for every g,
with at most two exceptions.

Suppose there exist two distinet meromorphic functions 01, 9. satisfying
T(r, g:) = o(L(r, f)) as r — oo, such that (56) fails to hold for g=g;, t=1,2,

Then, as in the proof of Theorem 7, we obtain

3
NT’ 0, ] —g;
(61) Iim inf izl*i—ng—) < %
r—>o T, f) 3

We shall show that strict inequality in (57) holds for every g, different from
¢, and g,. Suppose, on the contrary, that

o I(r, f)
liminf =220 =3
(62) r—> N (7'> 0, f- gS)

for some function g¢,, different from g, and g¢,, and satisfying T'(r, ¢;) =
= o(T(r, f)) as r— co. Then

3 . 2 _
2 Jr 0.1 —g) 2 N, 0, f—g) Fer, 0, f—gu)
Hminf = lminf S lim sup 2 %
r—> o I(r, 7) r—> T, f) + r—>c P I(r, 7)
<1, by (61) and (62).

This contfradiets (60) and proves our assertion.
Suppose, again, that (57) fails to hold for two distinet meromorphic fune-
tions gy, g, satistying T'(r, g;) = o(T'(r, f)) as r— oo. Then

ZN(T: osf'—'gi) 2 T

(63) lim sup =2 3 lim sup S 9 <2
r—>c0 p T(% f) \i-—zl —> @ p T('I’, f) 3

Then strict inequality holds in (56) for every g, different from ¢, and g¢,, for,
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suppose, on the contrary, that

lim inf — e 1)

e
>0 77’(73 o, .f - 93)

ol w

for some g,, different from g, and g,, with T'(r, g,) = o(T(r, f)) as r — oo.
Then, as in the proof of Theorem 7,

. . N(o*, 0, f—ga) 1
(64 P TV &

3
From (63) and (64) we again obtain limint{Y N(r o, f—g.)/T(r, f)}< 1
r—>m =1

which contradiets (60). This completes the proof of the corollary.
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Summary.

In this article, using the properties of prowimate orders, and lower promimate orders,
some resulis in the theory of entire and meromorphic functions are obtained. Also, the
mazimum modulus and the Nevalinna characteristic of entirve functions of finite lower
order are compared.






