Bruno D'Amore (*)

Sulle trasformazioni (1, 1, 2) osculatrici una corrispondenza fra tre piani proiettivi. (**)

- 1. Recentemente, M. VILLA ha iniziato lo studio delle trasformazioni puntuali fra tre piani proiettivi (¹). Valendoci della trattazione del VILLA stesso, determineremo sotto quali condizioni esistano trasformazioni (1, 1, 2) osculatrici di una corrispondenza fra tre piani proiettivi in una terna regolare di punti corrispondenti.
- 2. Sia $\mathscr C$ una corrispondenza puntuale fra tre piani proiettivi π_1 , π_2 , π_3 ed O_1 , O_2 , O_3 una terna regolare di punti corrispondenti in $\mathscr C$ (2) che assumeremo come origini delle coordinate proiettive x_1 , x_2 (in π_1), y_1 , y_2 (in π_2), z_1 , z_2 (in π_3).

Le equazioni della corrispondenza & sono del tipo:

$$\left\{ \begin{array}{l} z_1 = f_1(x_1,\,x_2;\,y_1,\,y_2) \;, \\ \\ z_2 = f_2(x_1,\,x_2;\,y_1,\,y_2) \;, \end{array} \right.$$

dove le funzioni f_1 , f_2 si suppongono sviluppabili in serie di potenze nell'intorno dei punti O_1 , O_2 (3).

^(*) Indirizzo: Istituto di Geometria, Piazza di Porta S. Donato, 40127 Bologna, Italia.

^(**) Lavoro eseguito nell'ambito del C.N.R. (G.N.S.A.G.A.) — Ricevuto: 23-XI-1973.

⁽¹⁾ M. VILLA, Sulle corrispondenze fra tre piani, Ann. Mat. pura e appl. (4) 71 (1966), 351.

⁽²⁾ Si veda in particolare il n. 2 del lavoro cit. in (1).

⁽³⁾ Si veda la nota (3) del lavoro eit. in (1), p. 353.

Detta \mathscr{P}_i la proiettività che la trasformazione puntuale T_i subordina fra i fasci di direzioni di centri O_h , O_k $(i, h, k = 1, 2, 3; i \neq h, i \neq k, h \neq k)$ ed assumendo come rette $z_1 = 0$, $z_2 = 0$, $z_1 = z_2$ le rette rispettivamente corrispondenti delle rette $x_1 = 0$, $x_2 = 0$, $x_1 = x_2$ nella \mathscr{P}_2 e come rette $y_1 = 0$, $y_2 = 0$, $y_1 = y_2$ le rette rispettivamente corrispondenti delle rette $z_1 = 0$, $z_2 = 0$, $z_1 = z_2$ nella \mathscr{P}_1 (4), le equazioni della \mathscr{C} diventano del tipo:

(2)
$$\begin{cases} z_1 = \alpha x_1 + \beta y_1 + A_1(x_1, x_2) + B_1(y_1, y_2) + C_1(x_1, x_2; y_1, y_2) + [3], \\ z_2 = \alpha x_2 + \beta y_2 + A_2(x_1, x_2) + B_2(y_1, y_2) + C_2(x_1, x_2; y_1, y_2) + [3], \end{cases}$$

dove:

$$\begin{split} A_{j}(x_{1}, x_{2}) &= \sum_{r,s} a_{rs}^{j} x_{r} x_{s} , \\ B_{j}(y_{1}, y_{2}) &= \sum_{r,s} b_{rs}^{j} y_{r} y_{s} , \\ C_{j}(x_{1}, x_{2}; y_{1}, y_{2}) &= \sum_{r,s} c_{rs}^{j} x_{r} y_{s} , \end{split}$$

dove $a_{rs}^{j}=a_{sr}^{j},\ b_{rs}^{j}=b_{sr}^{j},\ \alpha\beta\neq0$ (j,r,s=1,2), mentre con [3] si indicano i termini di grado superiore al secondo.

3. – In un altro recente lavoro (5), il VILLA ha espresso una corrispondenza fra tre piani proiettivi che, fissato un punto di π_1 (π_2) è una omografia fra i piani π_2 e π_3 (π_1 e π_3); fissato un punto di π_3 è, in generale, una trasformazione quadratica tra π_1 e π_2 (6).

Le equazioni della detta trasformazione sono del tipo:

$$(3) \quad \begin{cases} z_1 = \frac{a_{11}x_1y_1 + a_{12}x_1y_2 + a_{21}x_2y_1 + a_{22}x_2y_2 + m_1x_1 + n_1x_2 + p_1y_1 + q_1y_2 + r_1}{c_{11}x_1y_1 + c_{12}x_1y_2 + c_{21}x_2y_1 + c_{22}x_2y_2 + m_3x_1 + n_3x_2 + p_3y_1 + q_3y_2 + r_3} \\ z_2 = \frac{b_{11}x_1y_1 + b_{12}x_1y_2 + b_{21}x_2y_1 + b_{22}x_2y_2 + m_2x_1 + n_2x_2 + p_2y_1 + q_2y_2 + r_2}{c_{11}x_1y_1 + c_{12}x_1y_2 + c_{21}x_2y_1 + c_{22}x_2y_2 + m_3x_1 + n_3x_2 + p_3y_1 + q_3y_2 + r_3} \end{cases},$$

dove le a, b, c, m, n, p, q, r sono costanti.

⁽⁴⁾ Con tale scelta dei sistemi di riferimento, una terna di direzioni corrispondenti in $\mathscr C$ è data da $x_2=px_1$ in π_1 , $y_2=py_1$ in π_2 , $z_2=pz_2$ in π_3 .

⁽⁵⁾ M. VILLA, Le omografie fra tre piani proiettivi, Boll. Un. Mat. Ital. (IV) 4 (1971), p. 239.

⁽⁶⁾ Una siffatta corrispondenza ha assunto il nome di trasformazione: (1, 1, 2) nel lavoro citato nella (5), il VILLA dà le condizioni affinchè tale trasformazione sia una omografia anche tra π_1 e π_2 .

4. – Ci proponiamo ora di determinare le condizioni affinchè le (3) osculino, in una terna regolare di punti corrispondenti O_1 , O_2 , O_3 , le (2). Imponendo alle (3) di osculare in O_1 , O_2 le (2), otteniamo dopo aver posto, come è lecito, $r_3 = 1$:

$$\begin{cases} m_1 = n_2 = \alpha , & p_1 = q_2 = \beta , & n_1 = q_1 = m_2 = p_2 = 0 . \\ m_3 = -a_{11}^1/\alpha , & n_3 = -2a_{12}^1/\alpha , & p_3 = -b_{11}^1/\beta , & q_3 = -2b_{12}^1/\beta , \\ a_{11} = c_{11}^1 - \frac{\beta}{\alpha} a_{11}^1 - \frac{\alpha}{\beta} b_{11}^1 , & \\ a_{12} = c_{12}^1 - 2\frac{\alpha}{\beta} b_{12}^1 , & a_{21} = c_{21}^1 - 2\frac{\beta}{\alpha} a_{12}^1 , & a_{22} = c_{22}^1 , & b_{11} = c_{11}^2 , \\ b_{12} = c_{21}^2 - \frac{\alpha}{\beta} b_{11}^1 , & b_{22} = c_{22}^2 - 2\frac{\beta}{\alpha} a_{12}^1 - 2\frac{\alpha}{\beta} b_{12}^1 , & \end{cases}$$

purchè siano soddisfatte le seguenti condizioni:

(5)
$$a_{92}^1 = b_{92}^1 = a_{11}^2 = b_{11}^2 = 0$$
, $a_{11}^1 = 2a_{12}^2$, $a_{92}^2 = 2a_{12}^1$, $b_{11}^1 = 2b_{12}^2$, $b_{22}^2 = 2b_{12}^1$.

Possiamo dunque concludere che, in generale, non vi sono trasformazioni (1, 1, 2) osculatrici la (2) nell'intorno dei punti O_1 , O_2 . Se, però, si verificano le (5), in base alle (4) e (5), possiamo concludere che esiste una ed una sola trasformazione (1, 1, 2) osculatrice la \mathscr{C} , di equazioni:

$$\begin{cases} z_{1} = \alpha x_{1} + \beta y_{1} + a_{11}^{1} x_{1}^{2} + 2a_{12}^{1} x_{1} x_{2} + b_{11}^{1} y_{1}^{2} + 2b_{12}^{1} y_{1} y_{2} + \\ + c_{11}^{1} x_{1} y_{1} + c_{12}^{1} x_{1} y_{2} + c_{21}^{1} x_{2} y_{1} + c_{22}^{1} x_{2} y_{2} + [3], \\ z_{2} = \alpha x_{2} + \beta y_{2} + a_{11}^{1} x_{1} x_{2} + 2a_{12}^{1} x_{2} + b_{11}^{1} y_{1} y_{2} + 2b_{12}^{1} y_{2} + \\ + c_{11}^{2} x_{1} y_{1} + c_{12}^{2} xy + c_{21}^{2} x_{1} y_{2} + c_{22}^{2} x_{2} y_{2} + [3]. \end{cases}$$

5. – Il risultato ottenuto in 4 è facilmente interpretabile; esso porta alla seguente proposizione:

condizione necessaria e sufficiente affinchè esista una trasformazione (1, 1, 2) che oscula una corrispondenza $\mathscr C$ fra tre piani proiettivi in una terna regolare di punti corrispondenti è che siano indeterminate le direzioni caratteristiche delle T_1 e T_2 , dove T_i è la corrispondenza subordinata dalla $\mathscr C$ fra i piani π_h e π_k $(i, h, k = 1, 2, 3; i \neq h, i \neq k, h \neq k)$.

Infatti, le equazioni di T_1 e T_2 sono, rispettivamente:

$$T_1 \left\{ \begin{array}{l} z_1 = \beta y_1 + B_1(y_1,\,y_2) + [3]\,, \\ \\ z_2 = \beta y_2 + B_2(y_1,\,y_2) + [3]\,, \end{array} \right. \qquad T_2 \left\{ \begin{array}{l} z_1 = \alpha x_1 + A_1(x_1,\,x_2) + [3]\,, \\ \\ z_2 = \alpha x_2 + A_2(x_1,\,x_2) + [3]\,. \end{array} \right.$$

L'equazione complessiva delle direzioni caratteristiche di T_1 è

(7)
$$b_{11}^2 y_1^3 + (2b_{12}^2 - b_{11}^1) y_1^2 y_2 + (b_{22}^2 - 2b_{12}^1) y_1 y_2^2 - b_{22}^1 y_2^3 = 0$$

mentre quella delle direzioni caratteristiche di T_2 è:

$$(8) a_{11}^2 x_1^3 + (2a_{12}^2 - a_{11}^1) x_1^2 x_2 + (a_{22}^2 - 2a_{12}^1) x_1 x_2^2 - a_{22}^1 x_2^3 = 0.$$

È immediato constatare che condizione necessaria affinchè le (7) e (8) siano indeterminate è che valgano le (5); d'altra parte, se valgono le (5), e dunque esiste ed è unica la trasformazione (1,1,2) che oscula la $\mathcal C$ nella terna regolare $O_1,\ O_2,\ O_3,\$ allora le (7) e (8) sono indeterminate.

Summary

We determine the conditions for a correspondence (1, 1, 2) osculates a point correspondence among three projective planes in a regular tern of corresponding points.

* * *