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Yasg PAUL (%)

Unique Factorization in a 2-fir With Right ACGC,. (**)

1. - Introduction.

A 2-fir (also called a weak BEzoUT ring) is an integral domain in which the
sum and intersection of any two principal right ideals is principal whenever
the intersection is nonzero. Then the principal right ideals containing a fixed
non-zero element form a sublattice of the lattice of all right ideals. In [1]
it was noted that any factorization of ¢e R corresponds to a chain of
strictly cyclic submodules of R/cR (i.e. modules with one generator and one
irredundant defining relation). This suggests that we operate in the category
C= C, of all strictly cyclic right R-modules and all homomorphisms. Any
module in this category has the form RfaR (as=0). A 2-fir with right
ACC, is one which satisfies the ascending chain condition for prinecipal right
ideals. For a discussion of unique factorization of the nonzero elements of a
principal right ideal domain see [2].

2. - Right denominator set.

Suppose R is any ring and S is a subsemigroup of R (qua multiplicative
semigroup). We call S a right denominator set if S satisfies the following
conditions:

(1) s,te S implies ste S.

(2) 1e8.

(3) Given ac R, s€ 8 there exist a,e R, s,€8 such that as, = sa,.

(4) If wua=0 for some we S and ac R, then there exists ve 8 such that
av==0.

(*) Indirizzo: Indian Institute of Technology, Hauz Khas, New Delhi - 28, India.
(**) Ricevuto: 26-I-1972.



116 Y. PAUL [23

If S is a right denominator set, we can define a ring of fraetions R, by
taking equivalence classes of expressions as™' (¢e R, sc8). We can write
as~*= bt~* whenever there exist w,ve S with aw=—10v and su=1tv. The
product as~2bt~* is defined by first finding b,, ¢, such that sb, = bs, (so that
§71h = b,s7") and then putting as~1bi* = ab,(is;)"*. Any two fractions as?
and bt~ can be brought to a common denominator by finding s,, £, such that
sty =1s; =m say, and observing that as'=at;m™?, bi1=0bs;m*. Now
addition is defined by the rule:

as™t 4 bt = (at, -+ sb,)m™L.

Let
b: R R,

be a map that sends a+—>a-172

Now as™* = bt~* whenever there exist #,ve S with au==>bv and su=1{v.
Set s=t=1, b=0. Thus a-1"1= 0 implies au = 0 and u=».
Therefore

ker @ = {a € Rjau = 0 for some ue S}.

@ is injective if ker®@ =0, ie. if for all ac R, au=0 for some ueS
which implies that « = 0. Hence S consists of non-zero divisors.

Let M Dbe a right R-module. We define ze M as S-negligible if xs =0
for some se 8. Let t(HM) denote the set of all S-negligible elements of M.
Then #(M) is the kernel of canonical mapping:

M—>MQ,R,.

Lemma. t(M) is a submodule of M and t(M[t(M)) = 0.

Proof. Let zet (M) This implies that #s =0 for some s S8. Now
for any a e R, s 8 there exist a, € B and s, € 8§ such that as;, = sa,. Thus
was, = wsa, = 0. Therefore wa et (M) for all ac R. Now let w,y ety (HM).
This implies that xs =0, ys, = 0 for some s,s,€8; ie, ast=0, ys;t; =0
for all ¢, i,. Choose t,¢, €8 so that st=s, 1, =n say. Now necS, since
8y 815 0, 4 all € 8. Also (x+ y)n = wst 4 ys;t, = 0. Therefore (x4 y) e (M).
Thus £(M) is a submodule of M.

Suppose (z + t,(M))s= 0 for any v € M and some se S. Then zs e i, (M).
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Hence there exists te S such that zs¢ = 0. Since s,te § implies that ste 8,
it follows that » et (M), i.e. & + {(M)=1t(M). Thus t( Mt (M)) = 0. This
proves the lemma. '

We shall call t(3) as S-torsion part of M. It is in fact the unique greatest
such submodule.

3 — We shall call z€ R regular if no factor of it is a left or right zero-
divisor. Clearly any factor of a regular element is again regular. In an integral
domain the regular elements are just the non-zero elements. An R-module M
is said to be strictly cyclic or a C-module if it has a presentation of the form
M = R[2R, where z is regular. The module R/2R turns out to reflect all the
properties of factorization of z itself.

Theorem 1. Let R be a 2-fir with right ACC, and S a right denominator
set in R. Let C be the category of strictlly cyclic right R-modules. If M e C,
then (M) e C.

Proof. Let M= R[zR, where zc RB*¥ (R* denotes the set of nonzero elem-
ents of E). Let C, be the collection of C-submodules R/sR of R/zR such that
s€ 8. By condition (3), given a € R, s 8 there exist a, € R, s, € § such that
a8, = sa,. Henece as, € sk which implies that (¢ + sR)s, = 0. Hence ¢+ sRe
€ t(M) whence R[sRCt(M). Since R is a 2-fir with right ACC,, each object
of U has the ascending chain condition. Thus we may select a (not necessarily
proper) maximal member M, = Rfs, RCt (M) where z=xs, for some s, 8
and x has no nonunit right factor in 8.

If M,ctM), then there exists M, cyeclic, Ct (M) but ¢ M,. Since M,
is cyeclic and € M, therefore M, = (bR - 2R)/2R =~ bR/(bR N 2R) (b = 0).
Suppose that bR N zR =0, then M, = bR/0 =~ bR ~ R. Thus M, is free on u
(say). But M,Ct (M), therefore us = 0(sef8). Now « is free. Therefore
§= 0 which contradicts the fact that 0 ¢ S. Hence bR N 2R 5= 0. Now since
R is a 2-fir, therefore, bR N 2zR = dR, for some de R. Then M, = bR/AR ~ R/aR
where d= ba. This implies that M, is strictly cyclic. Thus any ecyelic sub-
module of (M) is in €. Now (M) is a sub-module of M by the above lemma.
Thus M, being a strictly cyclic submodule of M is in C;. Now M, = xR/zR
and M, = yR[zR where z= w5, = ya i.e. xR, yR22zR. Since R is a 2-fir and
sR N yR2zR + 0, therefore aR -+ yR = ¢R. Thus M,+ M,= (zR -+ yR)/zR=
= e¢R[z:E which is again in (. Also M,+ M, = eR[zR>aR/eR = M, which
contradicts the maximality of M,. Thus M, ¢ ¢,(M). Therefore M,= (M)
which implies that t(M)e €. This proves the theorem.
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4 — Let R be any ring and let I = {«|0 < o < oo} be an initial segment
of ordinals. A collection {S,|x € I} of right denominator sets in R is called a
right denominator chain in R if the following conditions hold:

(1) 8,c8,. for each axel, o+ «,.
(2) S,=U8p if « is a limit ordinal.
p<a
Theorem 2. Let R be a 2-fir with right ACC,. Let I = {0]0 < o < o)
be an initial segment of ordinals and let {S,|oc€ I} be a right denominator chain
in R. Let C be the category of strictly eyclic right R-modules. Fach M e C has
a unique sequence of C-submodules

M>o>My>M,>...0M,=0

where M, = L, (31), M,::tsi\___l(M,-wl) (1=1,2, ..,n) and o, are nonlimit

ordinals. such that oy = o> ...> o, .

Proof. Let M= RfzR where ze R*. If M,= 0 then there is nothing to
prove. Otherwise by Theorem 1 M D>a unique M, = ts, (M) = E/s R, where
z=rs, for some s,€ 8, and r has no nonunit right fath)r in §,. Lebt o be
the least ordinal such that s,e 8, . Clearly oy is not a limit ordinal and
o, = o. It follows by Theorem 1 that M, > ¢ unique M, = tstxl——l(ﬂ/[()) = R/s, R
where s, = a, s, for some element s, € 8,,-1 and @, has no nonunit right factor
in 8, . Clearly a, €8, because s,e8, . If M,;50 let o, be the least
ordinal such that s, € S, . Then o, > «, and «, is not a limit ordinal. Another
application of Theorem 1 yields M, D a unique M, = tsm_l(M 1) = R/s,R where
$; = @, s, for some element s, €S, -, and a, has no nonunit right factor in
8,-1. Clearly a, €8, -, because s;€8, . It M, = 0 we may repeat the argum-
ent. Now this process cannot continue indefinitely since we would obtain
an infinite sequence o« > «, > ... contradicting the well-ordering of ordinals.
Thus the process stops, say, with integer n. That is, a, has no nonunit right
factor in S%_l and M, = 0. This proves the theorem.
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Abstract

In this Note we define a right denominator set and consltruct a ving of fractions. Then
we develope some general results for a 2-fir with right ACC,.







