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Borel Measures on Connected Door Spaces. (**)

Introducton.

Let a linear space I of complex valued functions f defined on a set X be
given. For a, fixed in X, the DirAc delta functional at z,, dz,, mapping I
into the set of complex numbers, is given by

0xo(f) = [ fdm for each f in F,

where m is the point measure at x, defined on the measurable space (X, 2%).
One observes that relative to the distinguished point topology on X at a,,
m 18 a BOREL measure which in particular is constant on the proper open sub-
sets of X. The distinguished point topology is frequently the source of useful
counter examples in point set topology. It is also a special case of a connected
«DooRr » topology. A Door topological space is one in which each subset of
the space is either open or closed. Connected DooOR spaces have been utilized
in the representation of logical conmnectives as mappings between appropriate
topological spaces.

In this paper we consider the question, «Does every connected Door
space admit a non-zero BoreL measure which is constant on proper open sets? ».
As a consequence of a classification theorem that we establish for connected
Door spaces, an affirmative answer is obtained.

By employing an interesting construction afforded by ZorxN’s lemma, and
utilizing the known result, that if X is a set with cardinality C, with C infinite,
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then there is a subset A of 2% with cardinality 2¢ such that for any finite subset
845 ...y 8, of 4 and any sequence ¢, €, ... of 1 § and —1's,

N By, 70 where Spa=28, and §,_,=X—28;,
o=

1

we determine the cardinality of the collection of all connected DoOR topologies
on a set X with a given cardinality. In particular we show that the set of all
connected Door topologies on X has the same cardinality as the set of all
topologies, on X if X is infinite, namely, 22 here C is the eardinality of X.

Theorem 1. (Classification Theorem). If (X, T) is a connected Door
space and X 5= 0, then one of the following is true:

(1) There is o p in X such that A is a member of T if and only if either p
is not @ member of A or A= X.

(2) There is & p in X such that A is a member of T if and only if p is
a member of A or A=0.

(3) (X, T)is a T, space such that if A, and A, are open and A, =07 4,,
then A, N A, is an infinite subset of X.

Note that the condition (3) implies that the space is not 7,. In fact,
Theorem 1 shows that there are no T, connected DooR spaces except for the
0 and 1 member spaces. The cases in Theorem 1 are mutually exclusive except
that (1) and (2) are both true for 1 and 2 member spaces.

Corollary. @iven an arbitrary connected Door space X, then there ewists
on X & non-zero Borel measure which is constant on the collection of proper
open subsets of X, those open sets which are neither empty notr the whole space.

Theorem 2. (Cardinality Theorem). If X is a set with cardinality 0> 0,
then there are C connected Door topologies of type (1) and C comnected Door
topologies of type (2) for X. If C is finite, there are no topologies of type (3).
If C infinite, there are 227 conmected Door topologies of type (3) for X.

Consequently, if X is infinite, the set of all connected Door topologies
on X has the same cardinality as the set of all topologies on X.
To prove Theorem 1 the following lemma will be needed.

Lemma. If (X,T) is a connected Door space and G and H are disjoint,
non empty, open subsets of X, then X contains ewactly one closed singleton.
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There exists at least one closed singleton, p; otherwise the topology would
be discrete and since there are at least two points in X, the space would not
be connected.

If there were a second closed singleton, ¢, let Gy= G — {p, ¢} and H, =
= H —{p, ¢}. Then @, and H, are open and non empty (since otherwise G or H
would be closed) and G, N H,=@. Since ¢, = (G, U {p}) N (G, U {g}) and is
not closed, either G, U {p} or G, U {¢} is open. Without loss of generality
assume that @ U {p} is open. Since {p}= (6,U {p}) N (H, U {p}) is not
open, H, U {p} must be closed. Similarly H, U {¢} is open and & U {q} is
closed. Then (G,U {¢}) U (H U {p}) = (H,U {¢}) U (G, U {p}) is both open
and closed and therefore must equal X. Consequently, G, U {p} and H, U {q}
disconnect X; this eontradiction shows that ¢ can not exist.

Theorem 1 will now be proved by considering 3 cases: (1), (X, T') contains
a pair of disjoint, non empty, open subsets; (2), (X, Z) contains exactly one
open singleton and does not contain a pair of disjoint, non empty, open sub-
sets; (3) (X, T) confains no open singletons and does not contain a pair of
disjoint, non empty, open subsets. The statements in Theorem 1 will be shown
t0 be true for the correspondingly numbered cases.

In case (1), the lemma implies that there is exactly one closed singleton, p.
If p ¢ G, then G is 2 union of open singletons and G is open. If G is open and
not X or @, then G= X — @ is closed and not open. Therefore G is not the
union of open singletons so that p € G. Therefore, the space satisfies statement
(1) of Theorem 1.

In case (2) let p be the open singleton and let @ be a non empty open set.
Since {p} and @ can not be a pair of non empty disjoint open sets, p € G.
Conversely, if » € G, then p ¢ G. Therefore, G is closed or §. Consequently G
is open. Consequently, statement (2) is wvalid.

In case (3) the space is certainly 7, since {§} is open for every point, p,
in X. The space is infinite; otherwise since every singleton is closed the space
would be discrete. If the intersection of two open sets were finite but not
empty, this intersection would be both open and closed and disconnect the
space. The intersection of two open sefs can not be empty unless one of the
sets is empty by the definition of this case. Therefore, statement (3) is true.

This completes the proof of Theorem 1.

The only part of Theorem 2 that is not immediate is the statement that
if ¢ is infinite, then there are 227 connected DOOR topologies of type (3).
To prove this, let X be a set with eardinality ¢, with C infinite. By [1], p. 45
there is a subset, A of 2% with cardinality 2° such that for any finite subset,
{8, ..., 8.} of A4 and any sequence, ¢, ¢,, ... of 1’'s and —1’s,

N 8he,#=0  where 8,,=28, and 8, _,=35,.

k=1
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Now for each p in X, choose a set R, such that p ¢ B, and either B, e A
or B e 4, and for e X with g+ p - R, R,. Now let B consist of all the
R,s and for each set in A which is neither a R, or a B, choose arbitrarily
either the set or its complement but not both to be a member of B. Since
this arbitrary ehoice is made for 2° sets, there are 2°° possible choices of B.

Given a collection, B, let D be the set of all S such that there exists a finite

collection, T, ..., T, of members of B such S§2[)Z7,. Then consider all
k=1
collections, @ c 2%, such that

1. Dc@.

2. 8e€@G and T e G implies that S N T is infinite.
n

3. 8.y 8, in & and N 8, c T imply that T e @.

=1
First it will be shown that D satisfies these conditions. The first and
third are immediate. If there were § and ' in D such that SN T = {p,, ..., P.}

were finite, let Sy, ..., §» and 7, ..., T}, be members of B such that §>[) 8,
x m E n i=1

and o T,. Then NS, NN T,NN Rﬂi: @. This contradicts the definit-
f=1 i=1 =1 =l

ion of A.

By ZorN’s lemma there exists & maximal chain of such G's linearly ordered
by inclusion. Let G be the union of such a chain., It is immediate that G*
satisfies the conditions 1-3. It will now be shown that G* U {#} is a con-
nected DooOR topology for X.

G* U {@} is a topology on X by property 3. It is a connected topology
by property 2.

If 8¢ G*% let G be the set of all H such that there exists 7 in G* with
8N TcH. Then @, satisfies conditions 1 and 3 and properly contains the
maximal set G*. Therefore, G; can not satisfy condition 2 and there exist T
and T, in G* such that T,NT,N 8= {p,, ..., p,} is finite. Then SN T, N

N T, R, =0 so that T, N Ty N B, c S. Therefore e @ and G* U {0}
Tasl i=1
is a Door topology.
Since each different B will produce a different @*, this proves that there
are 22° connected DoOR topologies on X. Since there are only C of types (1)

and (2), there are 22° of type (3).

Proof of Corollary of Theorem 1. Let a connected Door space (X, T),
X #£ 0, be given. Then by Theorem 1, (X, T') satisfies condition (1), (2) or (3).
If (X, T') satisfies condition (1), there is a p in X such that A i§ open if and
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only if p is not a member of 4 or 4 = X. In this case the required BOREL
measure is the point measure at p which indeed vanishes on proper open sets.

If (X, T) satisfies condition (2), there is a p in X such 4 is open if and
only if p is a member of 4 or A=0. In this case the point measure at p
provides a BOREL measure whose value on each proper open set is 1.

If (X, T') satisfies condition (3), then (X, T) is a T, space such that if 4,
and A, are open and A4, % 0+~ 4,, then 4, N A4, is an infinite subset of X.
In this case a measure of the required type is given by the « counting » measure
m mapping 2% into the extended real numbers and defined by m{4) = the
cardinality of A if A is finite, and m(4d)=o0 if A is infinite, for each subset 4
of X. It is clear that m is a measure on X which is constant on the collection
of proper open sets, assuming the value oo on each. In the sequel we show
that each compact subset of X is finite. It follows that m is finite on compact
sets and therefore is a BOREL measure.

Lemma. ZLet (X, T) satisfy condition (3) of Theorem 1. Suppose the
subset A of X is compact. Then A is finite.

Proof of Lemma. Suppose 4 is infinite. Then clearly there exist sub-
sets @, H, of X satisfying:

(1) GUH=A4
(i) GNH=0
(i) Each of @, H, is infinite.

One of the subsets &, H, is closed. Certainly each is open or closed since
(X, T') is a Dooxr space. However, if both are open, the (ii) above contradicts
condition (3) of Theorem 1. We assume without loss of generality that H
is closed. Let

D = {w,, w,, ..}

be a denumerable subset of H. D is eclosed, for otherwise DN X — H is
open and satisfles DN X — H =@ which contradiets condition (3). Let
II=H-—D, then X — HU E= X — D is open. We coneclude in like man-
ner that for D, = D— {%, #, ..., #,} and F,=H —D,, that X —HU B, is
open for each positive integer n. It is clear now that the collection of all sets
of the form X — H U E, is an open cover of 4 which does not have a finite
subcover. Hence A is not compact.
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Abstract.

In this paper we give a complete classification of « Connected Door Spaces». Sub-
sequently we utilize these classification results to establish the ewmistence of mon-trivial
Borel measures on Connected Door Spaces with the distinctive property of being con-
stant on the family of proper open sets, that is the collection of open sets which are netther
the emply set nor the whole space.
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