BRUNO D'AMORE (*)

Concetto di biclique e di biriempimento nell'ambito della teoria dei grafi bipartiti e loro estensioni. (**)

Scopo del presente lavoro è quello di introdurre i concetti di biclique e di n-clique nell'ambito della teoria dei grafi polipartiti, studiarne alcune proprietà e presentare relazioni numeriche tra i cardinali delle classi definenti le biclique stesse. Sarà preciso impegno di un altro lavoro quello di mostrare un modo di usare i risultati ottenuti, dopo aver interpretato, in un modello strutturalmente identico, i concetti della teoria dei grafi in termini di teoria dei giochi. Il lavoro che conclude la ricerca ha per titolo: Alcune considerazioni sui QT-grafi interpretati come grafi polipartiti in relazione alla teoria dei giochi, e verrà pubblicato sugli « Atti del Seminario Matematico e Fisico dell'Università di Modena ». (***) Si sono volute mantenere staccate le ricerche, dato il loro diverso carattere, sopra precisato.

1. - Alcune definizioni.

Sia $G(X, \Omega)$, $\Omega \subseteq \mathcal{P}(X^2)$, un grafo finito semplice (1).

1) Com'è noto, G è detto bipartito completo, se è bipartito (²) e se, detti X', X'' i sottoinsiemi di X in cui sono separati i vertici dalla bipartizione, e dette n', n'' le loro rispettive cardinalità, m la cardinalità di Ω , è $m=n'\cdot n''$.

^(*) Indirizzo: Istituto di Geometria, Piazza di Porta S. Donato, 40127 Bologna, Italia.

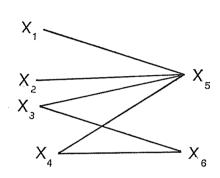
^(**) Lavoro eseguito nell'ambito del G. N. S. A. G. A., del C. N. R.. — Ricevuto: 27-II-1973.

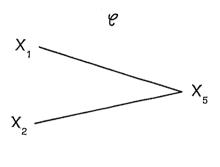
^(***) Il lavoro è stato nel frattempo pubblicato nel volume XXI, f. I, 1-7, 1972.

⁽¹) Cfr. [1], p. 5 e [2]. In questa nota, ogni grafo è supposto semplice, anche se ciò non verrà rilevato di volta in volta.

⁽²⁾ Cfr. [1], p. 7 e [2].

- 2) Il grafo $\mathscr{C}(Y, \mathscr{O})$, sottografo di G, $Y \subseteq X$, $\mathscr{O} \subseteq \Omega$, è detto *clique* se è completo.
- 3) In [2] è definito il concetto di grafo bicomplementare di uno dato: se $G(X, \Omega)$ è un grafo bipartito e $G^{\diamond}(X, \Delta)$ è tale che $G \cup G^{\diamond}$ è bipartito completo, allora G^{\diamond} è detto bicomplementare di G (3).
- 4) Se $G(X, \Omega)$ è un grafo bipartito e $\mathscr{C}(Y, \mathcal{O})$ è un sottografo di G bipartito completo, allora chiamiamo \mathscr{C} biclique.





2. - Alcune proprietà.

Se \mathscr{C} (Y, \mathscr{O}) è una biclique, Y' ed Y'' sono i sottoinsiemi in cui è diviso Y della bipartizione, e p', p'', s sono rispettivamente le cardinalità di Y', Y'', \mathscr{O} si ha immediatamente $s = p' \cdot p''$.

Sia $G^{\diamond}(X, \Omega^{\diamond})$ il bicomplementare di un dato grafo $G(X, \Omega)$ bipartito. Si avrà che $G \cup G^{\diamond}(X, \Omega \cup \Omega^{\diamond})$ è bipartito completo per definizione. Sia $\mathscr C$ una biclique di $G \cup G^{\diamond}$ che si ripartisce in due sottografi $\mathscr C'$ e $\mathscr C''$ rispettivamente sottografi di G e di G^{\diamond} ; sarà $\mathscr C' \cup \mathscr C'' = \mathscr C$, se e solo se è lecito operare, tramite \cup , su $\mathscr C'$ e $\mathscr C''$, cioè se e solo se gli insiemi dei vertici di $\mathscr C'$ e di $\mathscr C''$ coincidono.

Se $\mathscr{C}'(A, \mathscr{A})$, $\mathscr{C}''(B, \mathscr{B})$, A e B sono divisi rispettivamente dalle bipartizioni di G e G^{\diamond} (che si riflettono pure in A e B) nei sottoinsiemi A', A'' e B', B''; siano $a = \operatorname{card} A$, $a' = \operatorname{card} A'$, $a'' = \operatorname{card} A''$

⁽³⁾ Con il segno $G \cup G^{\diamond}$ abbiamo inteso indicare la nota operazione di «unione tra grafi», definita, per es., in L. Muracchini, *Introduzione alla teoria dei grafi*, Torino, 1967, p. 50. Si noti che, poichè il grafo $G \cup G^{\diamond}$ deve essere semplice, Δ non contiene elementi di Ω . Si noti pure che $G^{\diamond}(X, \Delta)$ può non essere connesso.

= card B', b'' = card B'', β = card \mathscr{D} . Si ha:

$$\alpha \cdot \beta = \operatorname{card}(A' \cup B') \cdot \operatorname{card}(A'' \cup B'')$$
.

Diciamo che \mathscr{C}'' è un biriempimento di \mathscr{C}' in \mathscr{C} . Classe del biriempimento di \mathscr{C}' in \mathscr{C} è il numero β , che varia al variare della scelta di \mathscr{C}' in G. Vale allora la seguente proprietà:

Dato G bipartito, se $\max_{\mathscr{C}'} \beta = \min_{\mathscr{C}'} \beta$, allora G è bipartito completo; e viceversa. La dimostrazione è immediata.

Consideriamo ora, dato $G(X, \Omega)$, il grafo $\overline{G}(X, \mathcal{P}(X^2) - \Omega)$ detto complementare di G(4).

Consideriamo una biclique $\mathscr{C}_1(T_1, \,\mathfrak{T}_1)$. Siano $T_1', \, T_1''$ i sottoinsiemi di T_1 ottenuti dalla bipartizione del grafo di cui \mathscr{C}_1 è sottografo. Siano poi $t_1', \, t_1'', \, \tau_1$ le cardinalità di $T_1', \, T_1'', \, \mathfrak{T}_1$. Evidentemente $\overline{\mathscr{C}}_1$ non è connesso, ma si divide in due grafi connessi $\overline{\mathscr{C}}_1'$ e $\overline{\mathscr{C}}_2'$. Se, analogamente, consideriamo $\mathscr{C}_2(T_2, \, \mathfrak{C}_2)$ e i e i numeri naturali di evidente significato $t_2', \, t_2', \, \mathfrak{T}_2$, supposto che $\mathscr{C}_1 \cup \mathscr{C}_2 = \mathscr{C}$, vediamo in quali condizioni si può dire che \mathscr{C} è connesso bipartito ed è una biclique.

Intanto, se p' e p'' hanno il senso specificato, dalle considerazioni precedenti segue che:

$$p' = t'_1 + t'_2 - \text{card} (T'_1 \cap T''_1)$$

$$p'' = t_1'' + t_2'' - \text{card}(T_2' \cap T_2'')$$

e quindi $s = p' \cdot p'' - \operatorname{card}[(T_1' \triangle T_2') \times (T_1'' \triangle T_2'')]$ essendo \times il simbolo della operazione di prodotto cartesiano e \triangle quello della differenza simmetrica.

Sia ora $\mathscr{C}(Y, \mathscr{O})$ una biclique. Sia $\mathscr{C}''(B, \mathscr{B})$ il biriempimento di $\mathscr{C}'(A, \mathscr{A})$ in \mathscr{C} . Siano A' e A'' i sottoinsiemi di A ottenuti dalla bipartizione di A in \mathscr{C}' ; siano B' e B'' gli analoghi sottoinsiemi di B. Siano rispettivamente a', a'', b', b'' le loro cardinalità. Siano infine Y', Y'' i sottoinsiemi analoghi di Y e n', n'' le loro cardinalità. Si ha, per definizione, $s = n' \cdot n''$ e quindi:

$$(1) s = \lceil a' + b' - \operatorname{card} (A' \cap B') \rceil \cdot \lceil a'' + b'' - \operatorname{card} (A'' \cap B'') \rceil.$$

Inoltre, da ovvie considerazioni segue che:

$$(2) s = a'a'' + b'b'' - \operatorname{card}(A' \cap B') \cdot \operatorname{card}(A'' \cap B'').$$

Dalla uguaglianza tra i secondi membri delle (1) e (2) segue la

⁽⁴⁾ Cfr. [1], p. 277 e [2].

$$[a' + b' - \operatorname{card} (A' \cap B')] \cdot [a'' + b'' - \operatorname{card} (A'' \cap B'')] =$$

$$= a' a'' + b' b'' - \operatorname{card} (A' \cap B') \cdot \operatorname{card} (A'' \cap B''),$$

da cui:

$$a'b'' + a''b' - a' \operatorname{card}(A'' \cap B'') - b' \operatorname{card}(A'' \cap B'') - a'' \operatorname{card}(A' \cap B') - b'' \operatorname{card}(A' \cap B') + 2 \operatorname{card}(A' \cap B') \cdot \operatorname{card}(A'' \cap B'') = 0$$
.

La definizione, e ogni altra considerazione, può essere estesa come segue. Sia G un grafo n-partito, $G(X, \Omega)$. Sia $\mathscr C$ un sottografo di G, n-partito completo. Diremo $\mathscr C$ una n-clique. Siano poi G_1^{\diamond} , G_2^{\diamond} , ..., G_n^{\diamond} sottografi tali che $G_1^{\diamond} \cup G_2^{\diamond} \cup ... \cup G_n^{\diamond} = G$. siano $\mathscr C_1, \mathscr C_2, ..., \mathscr C_n$ dei sottografi $\mathscr C_1 \subseteq G_1^{\diamond}$, $\mathscr C_2 \subseteq G_2^{\diamond}$, ..., $\mathscr C_n \subseteq G_n^{\diamond}$ tali che $\mathscr C_1 \cup \mathscr C_2 \cup ... \cup \mathscr C_n = \mathscr C$, essendo $\mathscr C$ una n-clique (5). Siano $\mathscr C_1(A, \mathscr A_1), ..., \mathscr C_n(A, \mathscr A_n)$, A p-partito in n maniere in generale distinte. Sia α il cardinale comune a ciascun insieme di vertici di $\mathscr C_1, ..., \mathscr C_n$. Si ha:

$$n\alpha = \operatorname{card} (A_{11} \cup A_{21} \cup ... \cup A_{n1}) \cdot \operatorname{card} (A_{12} \cup A_{22} \cup ... \cup A_{n2}) + \\ + \operatorname{card} (A_{11} \cup A_{21} \cup ... \cup A_{n1}) \cdot \operatorname{card} (A_{13} \cup A_{23} \cup ... \cup A_{n3}) + ... \\ ... + \operatorname{card} (A_{11} \cup A_{21} \cup ... \cup A_{n1}) \cdot \operatorname{card} (A_{1n} \cup A_{2n} \cup ... \cup A_{nn}) + \\ + \operatorname{card} (A_{12} \cup A_{22} \cup ... \cup A_{n2}) \cdot \operatorname{card} (A_{13} \cup A_{23} \cup ... \cup A_{n3}) + ... ,$$

con ovvio significato dei termini A_{ij} ciascuno dei quali rappresenta un elemento della polipartizione di A in \mathcal{C}_i .

Si trovano immediatamente, per le biclique, alcune proprietà generalizzabili alle *n*-clique:

- 1) se $\mathscr{C} = \mathscr{C}_1 \cup \mathscr{C}_2$, in generale \mathscr{C} è non connesso tetrapartito completo, se $A_1' \cap A_2' = A_1'' \cap A_2'' = \emptyset$; in tal caso, però, non è eseguibile l'operazione di unione e quindi basterà scartare questa situazione;
- 2) se $A_1' \cap A_2' \neq \emptyset$ o $A_1'' \cap A'' \neq \emptyset$ (o entrambi i casi), $\mathscr C$ è bipartito connesso non completo; ma $\mathscr C$ non è allora una biclique, dunque basterà scartare anche questo caso;

⁽⁵⁾ Valgono, naturalmente, le restrizioni relative alla applicabilità della operazione \cup , già fatte notare in precedenza nel caso n=2.

3) dunque se e solo se $A_2'\subseteq A_1'$ o viceversa e $A_2''\subseteq A_1''$ o viceversa, allora $\mathscr C$ è una biclique.

Definiamo ora l'operazione di concatenazione (°) tra biclique che indicheremo con il segno [+]. Se \mathscr{C}_1 e \mathscr{C}_2 sono due clique, intenderemo come « concatenazione » di \mathscr{C}_1 e \mathscr{C}_2 il grafo $\mathscr{C}_1 \boxplus \mathscr{C}_2 = \mathscr{C}(T,\varGamma)$ essendo $T = (T_1' \cup T_2') \cup (T_1'' \cup T_2')$ e $\varGamma = \mathscr{F}_1 \cup \mathscr{F}_2 \cup \mathscr{F}_3$ dove \mathscr{F}_3 è l'insieme degli spigoli congiungenti elementi di $T_1' \triangle T_2'$ con elementi di $T_1' \triangle T_2'$.

Evidentemente, quali che siano \mathscr{C}_1 e \mathscr{C}_2 , si ha che $\mathscr{C}_1 \boxplus \mathscr{C}_2 = \mathscr{C}$ è una biclique. Se $t_1 = \operatorname{card} (T_1' \cup T_2'')'$, $t_2 = \operatorname{card} (T_1'' \cup T_2'')$ ed $s = \operatorname{card} \Gamma$, si ha sempre $s = t_1 \cdot t_2$.

L'operazione \boxplus gode della proprietà associativa e commutativa, come è facile verificare. Inoltre, se $\mathscr C$ è l'insieme delle biclique, la struttura $(\mathscr C, \boxplus)$ è chiusa rispetto a \boxplus , dato che gli elementi di $\mathscr C$ sono biclique e \boxplus associa a coppie di elementi di $\mathscr C$ ancora un elemento di $\mathscr C$, per definizione.

Consideriamo il grafo particolare $\mathscr{C}_{\phi}(Y,\Omega)$ con $Y=\emptyset$; si può pensare \mathscr{C}_{ϕ} come una biclique. Se si ammette che $\mathscr{C}_{\phi} \in \mathscr{C}$, allora $\mathscr{C}_{i} \boxplus \mathscr{C}_{\phi} = \mathscr{C}_{i} = \mathscr{C}_{\phi} \boxplus \mathscr{C}_{i}$. Dunque la struttura (\mathscr{C}, \boxplus) è quella di monoide abeliano.

L'operazione \boxplus investe, nella teoria delle biclique, una particolare importanza sia dal punto di vista strutturale, sia dal punto di vista applicativo.

Chiameremo il grafo $H(Z,\mathcal{F}_3)$, dove

$$Z = Z_1 \cup Z_2 = [T_1 - (T_1' \cup T_2')] \cup [T_2 - (T_1'' \cup T_2'')],$$

con ovvio significato dei simboli, «chiusura» di &.

Seguono relazioni immediate tra il card Z ed il numero β , definito come biriempimento in precedenza.

Se $G(X, \Omega)$ è un grafo bipartito, indicheremo con $\mathscr{D}(G)$ la bidensità di G, cioè il max (card Y) (7), con $\mathscr{C}(Y, \emptyset)$. Ovviamente, se G è bipartito semplice connesso, $\omega(G) = 2$ mentre $\mathscr{D}(G) \geqslant 2$. Dunque: $\mathscr{D}(G) \geqslant \omega(G)$, per ogni G bipartito semplice connesso. Da qui segue la coppia di relazioni:

$$\mathcal{D}(\mathbf{G}) \geqslant \omega(\mathbf{G}) = 2$$
.

Inoltre, per relazioni note e dimostrate in maniera interessante altrove (8):

$$\mathscr{D}(G) \geqslant \frac{n^2}{n^2 - 2m} ,$$

⁽⁶⁾ Distinta, come si vedrà, da quella di «attaccamento» tra grafi, definita, per es., in L. Muracchini, op. cit., p. 49.

⁽⁷⁾ È chiaro il riferimento alla densità $\omega(G)$ di G intesa come massimo della cardinalità degli insiemi dei vertici delle clique in G.

⁽⁸⁾ Cfr. M. Ottaviani, Alcune relazioni notevoli tra parametri relativi ai grafi semplici, Boll. U.M.I., (4) 5 (1972), p. 451.

essendo n ed m rispettivamente le cardinalità di X ed Ω .

La (3), dato che G è bipartito, connesso ed è $n \neq 2$, può essere scritta anche nella maniera seguente:

(4)
$$\mathscr{D}(G) > \frac{(n'+n'')^2}{(n'+n'')^2 - 2m}$$
,

con ovvio significato dei simboli numerici. Se G è bipartito completo, si ha:

(5)
$$\frac{(n'+n'')^2}{(n'+n'')^2-2m} = \frac{(n'+n'')^2}{(n'-n'')^2};$$

ma è noto che

(6)
$$2 = \omega (G) \geqslant \frac{(n' + n'')^2}{(n' - n'')^2}.$$

Si possono dunque avere due casi:

(i)
$$(n' + n'')^2 = 2(n' - n'')^2$$
, se $\omega(G) = 2$;

(ii)
$$(n' + n'')^2 = (n' - n'')^2$$
, se $\omega(G) = 1$.

È immediato constatare che entrambe le uguaglianze (i), (ii) portano a casi assurdi, incompatibili con le ipotesi di bipartizione, connessione e completezza fatte su G.

Dunque, possiamo dedurre una restrizione alla validità della disuguaglianza (3), escludendo che valga nel caso $\omega(G) = 2$.

Bibliografia.

- [1] C. Berge, Graphes et hypergraphes, Dunod, Paris 1970.
- [2] B. D'AMORE, Alcune considerazioni circa i grafi bipartiti orientati, Riv. Mat Univ. Parma, (3) (1) (1972), 247-251.
- [3] L. MURACCHINI, Introduzione alla teoria dei grafi, Boringhieri, Torino 1967.
- [4] M. Ottaviani, Alcune notevoli relazioni tra parametri relativi ai grafi semplici, Boll. Un. Mat. It. (4) 5 (1972), 451.

Summary.

We introduce the definition of «biclique» as complete bipartite subgraph of a bipartite graph and we study some of its properties.

* * *