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C. W. GROETSCH (%)

Abel Continuity
of Generalized Lototsky Means. (*¥)

A natural way to generalize the classical continuity theorem of ABEL is
to consider summability methods which satisfy the following

Definition. A summability method A is said to be ABEL continuous

o

if given a series » s, which is A-summable to a sum s (denoted A( Y s,) =)

n=0 n=0

then for 0 <#<1 the series 3 s,t" is A-summable and lim A( 3 s,t) = s.

n=0 t—>1 n=0

We show in this Note that a certain class of regular summability methods
is ABEL continuous. Specifically, let {p,} be a sequence of numbers with

0<Pp1<Pr<1 for all » and Y p,= co. A sequence {a,} is said to be E(p,)-
n=1

summable to ¢ if lima, = a where

n

ay=ay; a,=[1(1—p)+ p.E)a

=21

and F is the shift operator given by Fa,=a,,;. A series is said to be
E(p.)-summable if its sequence of partial sums is B(p,)-summable. By setting
d,= (1 — p,)[p., one sees that the methods H(p,) are specializations of the
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methods [, d,] of JAKIMOVSKI. For basic properties of the methods the reader
is referred to [1] and [2].

If p,=p for all n, then B(p,) is the EULER-KNOPP transformation.
Kworp [4] proved that these methods are ABEL continuous. For Pa=k[(n-+k),
where % is a fixed positive integer, one has the methods of STERLING-KARA-
MATA-LoToTSKY [3], [5]. Of course, if p,=1 for all », then the ABEL con-
tinuity of Z(p,) reduces to the classical ABEL theorem.

The proof of the continuity theorem will follow closely the proof of the
elementary ABEL theorem, but first we need a preliminary result.

TLemma. If the E(p,)-transform of {s.} satisfies ls,',l < M, then the trans-
form of {s,i7} satisfies |(s.") |<M(t")'.

Proof. Let [a,,] and [b,;] be the lower triangular matrices representing
B(p,) and E(p,)! respectively, then

(1) Oy gr1 = 1— Pn+1) Uy 301 -+ Pryr Cnp s (a/’n'—-l = ()
and
(2) b7l+1.7:+1 = (1— -’p;—ll—z) b".7c+1 + ]9;.1 buge » (See [1]) .

The E(p,)-transform of {s,i"} is given by

n n 13 n n
($pt") = @S5 TF = D bes; 5 =3 8; An(t), Where A, () = 3 @ by:t".
i=0

k=0 k=0 =0 k=1

A routine caleculation using (1) and (2) gives
A1z+1_i+1(t) = [(1 - ]71:+1) + pn+1(1 - p:—-}-z) t]An,H—l(t) + pn+1_’p:—}-1Ani(t) .

Since {p,} is non-increasing and 0 < ¢ <1, it follows by induction that A4, (1)>0

for all # and k. An inductive argument using (2) (note that by, = 1) shows
]

that > b,, =1 for all k, thus we have

i=0

n n n k n
[($at) | <M S S nibptv = M 33 tprbrs = M >ttt = M(t").

Te=0  R=i k=0 =0 Fo==0

Remark 1. By the regularity of F(p,), it follows that if {sn} is H(p,)-
summable, then {s,i"} is E(p,)-summable to zero for 0 <z <1.
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Remark 2. In[l] it is shown that if > a, is E(p,)-summable, then

n=0
w

Ep,)( 3 an) = 3 Pnir6, and lima, = 0. Conversely, if ¥ p,,,a converges
n=0

n=0 n=0
and lima, = 0, then ¥ a, is B(p,)-summable with sum S Pairt, (see [1], the

n=0 n=0

proof of (4.1)). Thus if > s, is B(p,)-summable, then for suitable M,

=0

D Pna|(8a1) | < M me(t = MEB(p.)( 3 t") = M|(1—1?)

n=0 =0

o

and hence > p,,.(s,t") converges. By the previous remark lim (s,#") =0

n=0
©

and therefore Y s,* is E(p,)-summable.
n=0

Theorem. If 0<p,, ;<p.<1 for all n and zpn—_—. oo, then the method
na=1

B(p,) is Abel continuous.

Proof. Suppose E(p.)( > s.)=¢s and let w_, = 0,

iMs

0

n

uy=3s, and  f(t) = B(p.)( zsm)

k=0
Since
m—1
Zs = (1 — 1) D u, 1" wu,t
n=0 n==(

and since {fwmt"‘} is H(p,)-summable to 0 by Remark 1, it follows that

0

s —f(t) = (1 — ) B(p)( 3 (5 — wn)t") .

=0

Given ¢ > 0, choose N so that [(s — u,)’ |< ¢ for # > N, then by the lemma
and the representation given in Remark 2 we have

IE(pn)( z (8 - ”’n)tn) ! < l 2P7z+1[(8 - un) t"]ll + & Zpﬂ-m-i-](tlvﬂ-*-l)’ =

=0 n=0 n=0

= | an+1{(8 — w,) 8] | stN+1E(pN+,,)( zt“) .

n=0 =20

-1
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o

Since H(p,,,) is regular we have B(p,, )( > 1")=1/(1—1¢) and hence

ne==0

ls — fO) | <@ — D] 3 Pajall(s — wa) 2] | 4 &7+

n=0

from which the assertion follows.
It would be interesting to learn if there are general conditions on a sum-
mability method which will guarantee that it is ABEL continuous.
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Sommaire

Nous donnons une preuve de la géndralisation du théoréme de la continuité d’ Abel
qui resulte de la substitution des sommes généraus d’un type introdwit par M. Jakimovski
pour les sommes dans le théoréme classique.
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