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Temperature Distribution in Poiseuille Flow
Between Two Parallel Flat Plates. (¥%)

1. - Introduction.

1. — PAr (1956) has given the velocity and temperature distributions for
the PoIsEUILLE flow. However, he has given the solution of the energy equation
without considering the rate of heat generation per unit volume in the fluid
other than viscous dissipation. BEATNAGAR and TIKEKAR (1966) have obtained
the temperature distribution in a channel bounded by two coaxial circular
cylinders. They assumed that the rate of heat generation per unit volume as
a function of time but did not include the effects of visecous dissipation.
PurHOIT (1967) has given the temperature distribution of a viseous incompres-
sible fluid flowing between two parallel flat plates (CousTTE flow). S. N. DUBEY
(1970) has obtained the temperature distribution in a channel bounded by
two parallel flat plates when viscous incompressible fluid is flowing through it,
effects of viscous dissipation being taken into account. He has taken the rate
of heat generation per unit volume in the fluid as a linear function of time in
first part and an exponentially decreasing function of time in the second part.

In the present paper we propose to obtain the temperature distribution
when the rate of heat generation per unit volume varies as (n/2)-th power of
time (n=—1,0,1,2,..) in the first part. Our attempt, thus, is to arrive
at a relatively more general result which will be applicable to a wider range
of situation and which includes DUBEY’s result as a particular case. In the
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second part the temperature distribution in the same channel is studied in a
situation where the rate of heat generation per unit volume is a sinusoidal
funetion of time, meaning thereby that heat is periodically exchanged with
the fluid, the fluid therefore receives heat as often as it loses. Effects of viscous
dissipation have also been taken into account.

The expression for the temperature distributions in both the parts are
derived with the conditions that the plates situated at y = -y, (i) have zero
initial temperatures, and (ii) are always being kept at zero temperatures.

The result obtained is in complete aggrement with similar results obtained
by BALLABH (1969) who has obtained the expression for the velocity by using
the method of superposability.

In the present discussion velocity distribution is steady while the temp-
erature distribution is unsteady. The temperature distribution does not influence
the flow field of an incompressible fluid with constant properties. We have
assumed a fluid having these properties.

2. - Energy equation and its solution.

If we assume that the temperature 7' of the liquid is independent of its
axial position, then the energy equation (PAr, 1956) in the present case
reduces to
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where 0Q/ot is the rate of heat generation per unit volume in the fluid,
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are constants (u, represents the maximum velocity in the channel). The last
term in equation (1) is viscous dissipation and is not neglected in the present
investigation.

Part 1
3. - Flow when 1 @ — airle .
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With this assumption equation (1), then, becomes,

3 or _ we e L oL Cy?
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Now let T = [ exp (— st) T'dt be the LAPLACE transform of 7 and let T, be the
0

initial value of 7.
Multiplying equation (2) by exp (— st) and integrating between the limits 0
and co, we have,
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where p*=s/k'. Now let us find 7.
Initially the rate of heat generation is zero and the temperature is steady
in the channel. Hence 97,/0t= 0 and we obtain

d27, ¢
— = 2,
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(5)
The boundary econditions are
Ty=0, when Y= —"Y,

T,=0, when Y=, .

The solution of equation (5) under these boundary conditions is

Substituting this value of 7, in (4), we get

o7 - 1| © Oy a+/1+(n/2)
(6) a—y;—PzT=“7€7[‘l‘2p (?I%‘?/‘*)’l““;“"*"“m]-
The boundary conditions for 7 are,
=0 when y=—gy,,

(7

T=0
T=0 when y=1,.
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The solution of éq1mtion (6) under these boundary conditions is

(4]
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Now applying LAPLACE inversion theorem, we have

I8} a t1+(n/2)
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Let T = [ exp ((— st)T)dt, be the LAPLACE transform of T and let T, be the
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initial value of 7. Multiplying (11) by exp (— st) and integrating between
the limits 0 and co, we get

2
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where p?=s/k'.
Here T,= (C[12k)(ys — y*) as obtained in § 3. The solution of equation (12)

under the boundary conditions (7) is

(13) 7 0] (g/ﬁ—g/") + ab {l Cosh py}

12k s s(s? + b?%) " Cosh DY

Now applying LLAPLACE inversion theorem, we get,

+ %[{ T ye) + 720 falys) } cos bt - {fl(?/)fz(?/o) — 1A f1lzo) } sin bt]
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b b . b b
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Abstract

In this paper empressions for the temperature distributions in a channel bounded by
two parallele flat plates in Poiseuille flow are derived when viscous incompressible
fluid is flowing through it. Effects of viscous dissipation are nmot neglected and the rate
of heat generation per wwit volume (i) varies as (n/2)-th power of time, and (i) is a
sinusotdal function of time.

It is important to note that in the case of gases we have to take into account the work
of compression along with viscous heating, which has not been discussed here.



