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HARBANS L AL (%)

Semi-primary Ideals of Commutative Rings. (**)

1. - Intreduction.

GiLMER in [3] (p. 738) has characterised the rings in which each ideal is
primary. In this paper, we characterize the rings in which each ideal is semi-
primary and Noetherian rings in which each non-zero ideal is semi-primary.

2. = Preliminaries.

In the following, a ring will always mean a commutative ring. We call a
ring R to be a generalised semi-primary (notation: G.8.P.) ring if all the ideals
of R are semi-primary. Also we call a ring K to be a restricted generalised semi-
primary ring if all the non-zero ideals of R are semi-primary. An ideal 4 of
a ring Ris said to be simple if there is no ideal properly between A and A2 ([6],
p. 842). Anideal A of a ring R such that A = R is called a gepuine ideal ([6],
p. 838). A ring R is said to have KruLL dimension (notation: dim R) equal
t0 m if there exists a chain P,cP,cC...C P, of n+1 genuine prime ideals
of B and there is no such longer chain. Noetherian rings are not assumed to
have unity always. The notations and terminology, in general, are of [4].

3. - Rings in which all ideals are semi-primary.

Let R be a G.8.P. ring. Rings in which every ideal is primary are such
rings. Converse is false as is illustrated by Example 3.7.

(*) Indirizzo: Department of Mathematics, Hans Raj College, Delhi-7, India.
(**) Ricevuto: 1-1X-1971.
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3.1. — Theorem. Let R be a commutative ring (not necessarily with unity);
then the following are equivalent:

(1) R is ¢ G.8.P. ring.
(2) ZIwvery principal ideal of R is semi-primary.
(3) Prime ideals of R are totally ordered under set imclusion.

Proof. (1)=-(2)isimmediate.Let (2) hold and P and @ be two primeideals
of R such that neither of PCQ or § C P holds. Choose € P—@Q and ye@ — P,
There exist prime ideals P, and @, with +/(#)= P, and +/(y) =Q,. Also
+/(#y) = P’ for some prime ideal P'. Then P'= P,NQ,. This gives P,CP’
or Q,CP'. Both are impossible and we arrive at the required contradiction
which proves (2) = (3). Let (3) hold now. For any ideal A of B,/A =NP,,
where the intersection is over all prime ideals P,2 A. The totally ordered
nature of prime ideals yields that /A = P, for some prime P, so that 4
is semi-primary.

3.2. — Corollary. 4 G.8.P. ring with unity is quasi-local.

3.3. — Lemma. ZLet B be a Noetherian G.8.P. ring with uwity; then
dimR<1 and B can have at most two genwine prime ideals.

Proof. Let M be the unique maximal ideal of B. If+/(0) = M, the Lem-
ma follows. So Let 4/(0) = M and choose ® € M —+/(0). Further if we sup-
pose /(@) 7= M, take y € M —+/(®). Now +/(0) cy/@) c+/y) S M. By [5] (theo-
rem 3, p. 84), we get a prime ideal P such that «/(¥)CPCM and P is a
minimal prime ideal of 4/(%). Thus 4/(0)c+/(#) c P, which is impossible in
view of [53] (theorem 21, p. 217). Hence /(@) = M and 4/(0), M are the only
two genuine prime ideals.

We will denote the prime ideal 1/(0) by @ in the remainder of this section.

34. — Lemma. Let R be a G.8.P. ring with unity such that its unique
maxzimal ideal M is principal. Now if P c M, for a prime ideal P of R such that
there is mo prime ideal properly between P and M ; then M is simple, P = M*,

n=1
every prime ideal properly contained in M is contained in P and each genuine

ideal not contained in P is a power of M.

Proof. That M is simple and PC (| M" are immediate. Consider the

n=l

domain R/P which has just three prime ideals, each of which being principal;
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so by [1] (theorem 2) R/P is a Noetherian domain and thus by [7] (p. 216)
N [HM/P]= (0) which in turn implies [} M»C P. The third assertion is obv-

fi=s1 f=1

ious. As for the last, let A be a genuine ideal of B such that A ¢ P. As R is
a G.8.P. ring, v/A = M which being principal, M*C A C M for some positive
integer k. Liemma 3 of [2] proves this assertion, since M is simple.

3.5. — Theorem. Let R be a commulative Noetherian ring with wunity.
Then R is a G.8.P. ring if and only if R is one of the following types:
(1) Ivery ideal of B is a primary ideal.
(2) R is aone dimensional local ring with only two genuine prime ideals @
and M (the unique maximal ideal of R).

Proof. If Ris any one of these types, the K is clearly a G.8.P. ring. Let,
now, R be a G.S.P. ring. By Lemma 3.3, dimE<1. If dim R =0, then R is
of type (1) and if dim B =1, then R is of type (2).

3.6. — Corollary. If in type (2) above, M is simple, then R is a discrete
valuation ring of rank one.

Proof. First we prove that M is prineipal. Let # € M — @, then /(@) =
= M, R being Noetherian, there exists a positive integer » such that M»C
C(x)C M. Thus by [2] (lemma 3) (v) = M* for some k. If k=1, M is prin-
cipal. Suppose k>1.For a yin M — (x), and a repetition of the above argu-
ment gives that for some %y, (y) = M™ and k,< k. This way we reach at an
element m in R, in a finite number of steps, such that M == (m). Revoking to
Lemma 3.4, we get @ = () M" and as R is a local ring, by [7] (p. 217) @ = (0).

=1

Thus we have a local one dimensional domain, with its unique maximal ideal
to be simple. By [1] (theorem 8) & is a DEDEKIND domain and hence a dise-
rete valuation ring of rank one.

The following example is of a G.S.P. ring in which every ideal is not primary.

3.7. - Example. Let R={a,+ @, + > b,y": ay, a1, b, F}, F any field,
A=

2=y =y =20, fo =af and fy =yf for every f in F. R is a ring with the
usual addition, multiplication and equality as in power series rings. Further
this is a local ring, with its unique maximal ideal M = (=, ) and contains one
more genuine prime ideal (x). This is a G.8.P. ring by Theorem 3.1 and is of
type (2) by Theorem 3.5. But in this ring, all ideals except (0) are primary,
whereas (0) is only a semi-primary ideal.
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4. - Rings in which all non-zero ideals are semi-primary.

The ring of integers modulo pg where p, g are different primes and F, ®F.,,
P, fields, are the examples of restricted G.S.P. rings which are not G.S.P. rings.
We start with

41. - Lemma. Let R be a restricted G.8.P. ring (not necessarily with
unity) such that 4/(0) = (0); then R is ¢ G.8.P. ring.

Proof. Obvious.

4.2. — Remark. For a ring R to be restricted G.8.P. but not G.S.P,,
we have necessarily 4/(0) = (0) and R is not an integral domain. Clearly such
a ring is always a semi-prime ring.

43. — Lemma. Let B be a Noetherian restricted G.8.P. ring which is not
& G@.8.P. ring (not necessarily with wnity). Then il coniains only two minimal
prime ideals P and @, such that PN @ = (0), PZQ, QL P and every prime ideal
of B contains either P or Q.

Proof. In view of the above remark, there exist # and 4 in R such that
2y=0, © =0, y 7% 0. Then +/(x)=P and 1/(y)=¢ where P and @ are suitable non-
zero prime ideals. R being Noetherian, there exist integers m and » such that
PnC(x) and @*C(y). Thus P7Q»= (0). The last assertion follows from this.
Now (0) =4/(0) =+4/P*Q7= P N and since (0) is not a prime ideal, there-
fore, P¢Q and Q¢ P. These P and @ are minimal primes.

44. - Lemma. Let R be a Noctherian restricted G.S.P. ring (not neces-
sarily with unity). Then for any prime ideal T and R, the family of all those prime
ideals which contain T is totally ordered.

Proof. We can assume B to be a restricted G.S.P. ring which is not a
G.8.P. ring, in view of Theorem 3.1. Then by Lemma 4.3, K has only two mi-
nimal prime ideals P and @ such that any prime ideal of R contains either P
or Q. It clearly suffices to prove the result for 7=P and T=Q. Let T=P
and P;, P, be any two prime ideals each containing P. As P%0, P,NP,#0.
But then P,N P, iy a prime ideal and therefore P,C P, or P,CP,. Thus the
prime ideals containing P are totally ordered. Similarly when 7 = @.
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4.5. - Theorem. Let B be a commutative Noctherian ring with unity.
Then R is a restricted G.8.P. ring which is not & G.8.P. ring if and only if R is
one of the following types:

(1) R is a local ring of dimension one having only two minimal prime ide-
als P and Q such that PN Q = (0).

(2) R is a direct sum of two fields.

Proof. Let k be a restricted G.S.P. ring but not a G.8.P. ring. By
Lemma 4.3, it contain only two minimal prime ideals P and @ such that P¢Q,
Q4¢P and PNQ=(0) and every prime ideal of R contains either P or @.
Now two cases arise:

‘Case I. When P4 @ =R. There P and @ are easily seen to be maximal
ideals and therefore, R ~ R/P @ R/Q. Thus R is of type (2).

Cage II. When P+ Q¢ R. These there exists a maximal ideal M con-
taining P4 Q. Let M’ be any other maximal ideal of B. Then either P C M’
or QCM'. Suppose PC M. Pagsing onto B[P, whichis a G.S.P. ring and hence
quasi-local, we get M'= M. Also from this, we have dim R =1, in view of
Lemma 3.3. Thus R is a local ring of dimension 1, with only two minimal
primes P and ¢ such that PN @ = (0). Thus R is of type (1). Converse is
easily proved.

Combining Theorems 3.5 and 4.5 we obtain the following

4.6. — Theorem. Let R be a commutative Noetherian ring with wnity;
then B is a restricted G.8.P. ring if and only if R is one of the following types:
(1) Ewery ideal of R is a primary ideal.
(2) R is a one dimensional local ring with only twog enwine prime ideals Q
and M (the unique maximal ideal of R).

(8) R is a local ring of dimension one having only two minimal prime ide-
als P and Q such that PN @ = (0).

(4) R is a direct sum of two fields.
I wish to thank Dr. 8. SiveH for helping me, during the preparation of this
paper.
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