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Operational Formulas Associated
with a Class of Polynomials Unifying the Generalized

Hermite and Laguerre Polynomials, (*¥)

1. - Imntroduction.

As long ago as 1941, BURCHNALL [2] made use of the operational formula

n

(L1) (D —20) = 3 (—1>n—k(7;) H, (@) D,

k=0

where D = d/dwz, to prove the well-know relation

(1.2) Hpp() =mi'§;"?— 2)¢ ("’) (7;) 5V H () H ()

= k

due to NTELsEN [11]. Since then, much advance has been made toward the
study of operational formulas associated with eclassical polynomials. For
instance, GourLp and HoPPER [8] have established that

(1.3) D = i (—1)~* (Z) H; (@, a, p) D*,

(*) Indirizzi degli A.A.: C. M. Josmi, Department of Mathematics, Texas University,
College Station, Texas, U.S.A.; J. P. SineHAL, Department of Mathematics, University
of Victoria, Victoria, B.C., Canada.
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where the symbol D is defined by

D=D —pro1 4 ofs.
and. satisfies the relation

n—1
22D = ] (@D —pra-+oa—j),

j=0
and

(1.4) H(@, o, p) = (— 1)" 2™ exp (pa") D*{a" exp(— pa")}

defines the elegant generalization of the HERMITE polynomials to which it
reduces when ¢ =0,p =1,r = 2.

The relation (1.3) provides a generalization of the formula of BURCHNALL
quoted above as well as of CarriTz’s formula [3]

n ﬂw

(1.5) M @D—atatp=n 3 7;7, Ii+b(z) DF,
k=0 K1

i=1

for the LAGUERRE polynomials.

Ar-SaraM [1], CHATTERIEA ([4], [5], [6]), Das [7], R. P. SincH [12] and
many others have also studied the operational formulas for the classical poly-
nomials and have either rederived already known results or obtained new ones.

In a preceding paper we [14] introduced a class of polynomials unifying
the generalized HErMITE and LAGUERRE polynomials by means the RODRIGUES’
formula

(1.6) J2@, 7 py q) = C(g, n) @™~ exp(par) -D*{w*+e exp(— pa7)} ,

where
(_ 1)(11/2)((1— {g—2)

?
BB (1), 0 g

Clg,n) =

g being a non-negative integer, and
(@)= (@ +1)... (@ +n—1), n>1, (@) =1.
In the present paper we develop certain operational formulas for the gene-

ralized polynomial J{®(w,r, p, ¢), and make an attempt to unify the various
results that appear in the literature.
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2. - The operational formulas.

In proving the various results we shall make use of the differential operator
¢ = x(d/dx), which possesses the following interesting properties:

(2.1) F(O){a'f(a)} = a"F( + «)f(®) ,

(2.2) I'(8) [{exp g(@)} f(@)] = {exp g(a)} F'(0 + 2 g") f(x) ,
and

2.3) (O F(6 + ) ... F(é -+ (n—1) oc) = {m“F(é)}" .

In view of the above mentioned formulas, it follows in a straight forward
manner, that

D~ {g*+o exp(— par) Y} =

2.4 »
4 = aleimte exp(—pa) [[ (6 + o+ (g—L)n—pra-+ )Y,

i=1

where Y is a sufficiently differentiable function of .
On the other hand, we also have

f D {p+e exp(—p ar) - ¥} =

n n
= 2W/22(e— 1 g% oxN(— p 2" ] Ym—ke—1)g—2)2 .
2.5) < p(—p @) 3 (1) (,)

x? k
(Dam-wae—a (Eg(;l)_/g) JEE (@, 7, py q) DFY .

Therefore, a comparison of (2.4) and (2.5) readily yields the operational formula

n

(6 +a+ @g—Dn—pro-+j)=

i=1

n

(2.6) § == pli—onQag—1)2 z (____ 1)(n—k)(q— Dte—2y2 (";c') (1)(n—k)q(2 e

k=0

a? k
"\ qae—12 SR (@, 7, py ¢) D*.

\

Secondly on expressing

@~ exp(p ar) Dr{a*+e exp(— p a7)+ ¥}
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in the form

@ exp(p #7) - 8(8 —1) v (6 —n -+ 1) {wrkgeta—Dntk exp(—p gr) - ¥}
and using the relations (2.1), (2.2), (2.3) and (2.5) we are led to the formula
( {#(8 — T - 1)} {a+te-vntk exp(— p ar) - ¥} =

n n
= gotEtn Qnale— 12 z (_ 1)(n——s)(q—1)<v~—2)lz (1)(ﬂ_s)q(2_q).
(2.7) P, =0 s

s s
. (m) JEk (@, v, p, D Y.

Next we observe that the recurrence relation (4.2, [14])
(@D + azrt— pr a1 I (z, 1, p, ¢) =

Clg, n)
= G@n+ D) I, 7y Py )

suggests the operational formula

C(g, »)

m J(x) . —_—
(2.8) DI (@, 1y py q) = @ m +m)

J;;X_;mq) (s 7y Dy Q) 5

where

D, = 2D 4 o w7t — p r getr1,

which corresponds to the formula (3.5, [8]) to which it reduces when ¢ = 0.

We also notice that when ¢ = 0, our formula (2.6) reduces to (1.3) re-
ferred to above and when p =g =7 =1, we obtain the operational for-
mula (1.5) due to CarrLiTz [8]. Where as in the case p = ¢ =2 and r =—1,
our formula (2.6) assumes the form ([13], p. 129)

n

@29 TL@D + 20+ a4 2m—jt+ 1) =any (k) gn-k Yok (z) D*

j=1 k=0

where Y{¥ () are the generalized BESSEL polynomials of KRALL and FRINK [10]:

YO(@) = o Fof—n,n + & + 15— 5 — Ja] .
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On the other hand, when ¢ =1, (2.7) yields the formula [9]

{w(@D — &+ 1)} {z* exp(—p o). ¥} =
2.10)

S‘

n
= @ exp(—p a7) n! E ; i@, ry p) DY,

where L™ (2, r, p) are the generalized LAGUERRE polynomials of Sinem and
SRIVASTAVA [15]:

L@, 7, p) = TR ) D {z*+" exp(—p @)} .

n!

If in addition to ¢ =1, we let p =7 =1 we shall obtain the formula
of DAs [7] which reduces to the form

(2.11) {(zD + 1)}*{z* exp(— 2)} = 2**" exp(— x) n! L (2),
due to AL-SALAM [1] when k=0 and ¥ =1.

It is also seen that when ¢ =% = 0 and ¥ =1 our formula (2.7) simpli-
fies to

{w(@D + 1)} {z* exp(—p &)} = (— 1)"a*"H (2, «, D) .

3. - Some applications.
Setting ¥ =1 in (2.6), we have

n gt—an

1) TH(E+atg—1n—pro+i) 1= T, 75y q) -
§=1 Clg, n)
So that
glt-a)im+n) mtn

mJ;?ln(w7T,p7 Q):H{(S_I“a"l" (q—l)(m+qz)_p¢mr+7}1

i=1

[ {6+ o+ (@—D)m+n)—prar+j+n)

1::!5

-’le; {0+ o+ (g—1)(m+ n) —prar+ §}1 =
a;(l—a)ﬂ

0(q, n) ];I {4+ac+n+ (@g—1)m—pra it j}JEta0m (g p q).
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Therefore, in view of (2.5) we finally have

Clg, m) C(g, n)

Olg, m + n) Tattal®s 122 0) =

1 i m

3.2) | = 2 (e ) (1) o) -
%

o (l)mq (2—0) k=0

Yoalg—1)

q k
' <-——2 4 ) SRR (@, 7y py q) DEJEFHOI (0,1, p, g).

If however, we reverse the order of the operators on the Lh.s. in (2.6) and
proceed as above, we shall get an alternative formula

Clg, m + n) I (@ 1y Dy ) =

. _y"i( 1)Ma-1a-2)l2 (""’) 1)
B3 T Waea 5 ) e

xq k - '\
) (W‘{)) P (@, 1, P, @) DE JEH™ (5,7, p, ).

A comparison of (3.2) and (3.3) leads us to the identity

-

m

1 )la~1) (g—2)f2 1 " -
(_" ) A ( )(m—k)q(z—a) 9%hqelg-1) :

S itnt® (g7, py q) DEJ @™ (@, 7, Dy q) =

m o 1Yo m 2 k
— g (— 1)Ha-1a-2)2 (7‘;) (1) mtyazo (W—l—)) .

k=0

Mz

k

I
S

I (@, 1, p, q) DEJEH (2,7, p, qQ,

which in the special case g = 0, gives us

g (—1) <"Z> H;, i, oy p) D* Hiy(, o p) =
(5.3) ) i
{ =k§0 (— 1)’";(?:) H}, (@, o« + n, p) D* Hi(x, & — m, P);

for the generalized HERMITE polynomials.
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Next in (3.3) if we replace o by o — gm, multiply both the sides by " and
sum from m = 0 t0 M = co, wWe get

1 mtn)g (2
S Wiwtnea o goem (3, 7, p, q) =

m—0 m!

(3.6)
17"(1 -,
= (e o TP {0+ Agtan, 1y py g} 3 2D g Jioam (5,1, p, g)

e m!

where 4, stands for
(— 1) %la=1 a=2) (9)~Yaala—1) |
Since it can be proved fairly easily that
5 Dmae- \malea) o, (w—qm) —
3.7) mEzo oy i J 5™ (2, 7 P,y q)
= 14 4% expip o™ — p " STl
A 14+ 4 1)

(1)

(3.6) finally assumes the form

© (1)(m+n)q(2—q) m J(a_qm) (
“, m! mn

= (Do) (1 + Aot 251)* exp{p @"— p a"(1 + A tas1)} -
cJ@ (@4 A a1, P, q) .

2Py Q) =
(3.8)

It is interesting to remark that the formula (3.8) admits a generalization of
(5.3, [8]) to which it corresponds when q =0, while ¢=1 yields the re-
lation

2 (m 49
2 ( L) LG (@, 17y p) =

(3.9)
= (14 t)" exp{p @ — p " (1 + )7} L& {w(1 + ), 7, D} ,
and when p = ¢ =2 and » = — 1, we obtain the generating relation
o " 2t A
—_— (x—2m) J— 71- -3 . {0¢) i

for the BESSEL polynomials.

We wish to express our sincere thanks to Prof. H. W. Gourp and Dr. H.
M. SrivasTAvaA for constant encouragement.
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Summary.

The present paper deals with certain operational formulas associated with a class of

polynomials introduced by the authors [14] which provides a wnification of the warious
extensions of the Hermite and Laguerre polynomials given, for instance by Gould
and Hopper (8], Singh and Srivastava [15], and many others veferred to in [14].



