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DAaviD W. BALLEW (%)

Invertible Ideals in Orders. (**)

1. = Introduction.

This paper will consider the problem of classifying invertible ideals in orders.
Sections 1 and 2 lay the groundwork and give the basic definitions. In Section 3
we give several conditions for invertibility and show that invertible ideals in
orders behave much the same way as invertible ideals in DEDEXKIND domains.
In Section 4, it is seen that in division algebras over the quotient field of a
complete discrete valuation ring, invertibility is equivalent to projectivity.
‘We consider the structure theory of invertible ideals in Section 5. We end with
two example illustrating points made in the paper.

2. - Preliminaries.

Let D be a DEDEKIND domain, K its quotient field and 2 a central simple
K-algebra. A D-order in X is a subring A of X which is a finitely generated
D-module, containg D and spans X over K, i.e., 4 ®,H~2. It is clear thatb
orders are two-sided Noetherian rings. A D-order I'" in X' is maximal if it ig
not contained in any other D-order in Y. It is known that maximal D-orders
always exist [1].

We will assume that to say «an ideal in an order » means a fractionary
ideal in the order, and assume that all ideals (one-sided or two-sided) are full
in the sense that I ®, K ~4®, K. Finally, we assume that all 4-modules
considered. are D-torsion free.

(*) Indirizzo: Department of Mathematics, School of Mines and Technology, Rapid
City, South Dakota 57701, U.S.A.
(**) Ricevuto: 15-1-1970.
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Now let A be a D-order in X and let M be a left A-module which is D-tor-
sion free. Define the left order of M in X, 0,(M), by

(M) = {weZ:0MC M} .
If N is a right A-module, the right order of N in X, 0,(N), is defined by
0,(N) = {weX: NoCN}.

Tt is clear that 8,(M) is a D-order in X, 0,(M) 2 A, and that 6,(H) is the largest
D-order in 2 having M as a left module.
If I is a full left ideal of 4, define 0,(I) by

0I)={weX: IncCI}.

Clearly, 6,(I) is a D-order in 2 but will not contain /A unless I is also a right
A-ideal.
We will use the following notation:

(A:I), = {we X: Inc A},
(A: I ={weX:wlcA}.

Lemma 1. LetI bea full left ideal of the D-order A. Then there are natural
isomorphisms
0.(I) =2 Hom,, (I, I)
and
(A:I), = Hom, (I, 4).

. Proof. Let f be an element of Hom, (I, 4). Since K ®, =K ®, A= 2,
let ' denote the unique extension of f to K ®,Hom, (I, 4) >~ Hom, (X, X},
([1], lemma 2.4). Since f(») = 2f'(1), f/(1) is an element of (A:I),. Define

p: Hom, (I, A) - (A:1),,

by wu(f) =f'(1) for f in Hom, (I, A); x is easily seen to be a A-isomorphism.
The A-isomorphism
V: Hom, (I, I) - 0,(I)

is defined similarly.
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Lemma 2. Let A be a D-order in X and let I be a full left A-ideal. In
order that I be left A-projective, it is necessary and sufficient that there be a set of
elements {oy, ..., %} in (A:I), and a set of elements {w,, ..., »,} in I such that

Sow, =1.
=1
Proof. From ([4], Proposition 3.1, p. 132)it is seen that I is A-projective
if and only if there is a set {f,} in Hom, (I, A4) and a set {#;} in I such that
S fiw)w,=w for all # in I and such that f,(x) = 0 for all but a finite number

of values of theindex ¢. Let f; denote the unique extension of f, to Hom,, (X, X),
for all 4. Then using the isomorphism g of Lemma 1 to identify fi(1) with o,
in (A4: I), and using the fact that I is full, we have the desired conclusion.

Lemma 3. Let A, I'2A betwo D-orders in X and let M be a left A-module.
If M is A-projective, then I'M (the smallest left I-module containing M) is I'-pro-
jective.

Proof. It is sufficient to consider the case where M is free, and for this
it is enough to look at the case where M = A. But then I'M =1, so the
result is clear.

3. - Invertible ideals.

Let I be a two-sided A-ideal. Say I is A-invertible if there is a two-sided
A-module J such that IJ = JI=A.

Pirst we remark that Bxample 11 will show that a full two-sided A-ideal
may be both right and, left A-projective but not invertible. However, we do
have the following result.

Proposition 4. Let D be a Dedekind domain, A a D-order in X and I
a full two-sided A-ideal. Then I is A-invertible if and only if I is both right and
left A-projective and (A:I);= (A:1),.

Proof. Let I be A-invertible by J. Since JC(A:I), and (A:I), =
=JI(A: I),CJA = J, we have that J = (A: I),. Similarly, J = (4:1),. Hencel
is an element of (A:1),I and of I(A:1I),, so Lemma 2 and its counterpart
for right ideals imply that I is both right and left A-projective.

Conversely, if I is left A-projective, we have from Lemma 2 that (A4: I),I
contains 1, so (A: 1),I124. Also, (A:I),I=(A:I,IcA, so (Ad:I),I=A4.1In
the same way, I(4:I),= A and I is invertible by (A:I),= (4: I),.
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‘When A is a D-order contained in I, a maximal D-order, Example 11 shows
that an ideal I can be [-invertible but not A-invertible even if I is both right
and left A-projective and 6,(I) = 6,(I). We can, however, prove the follow-
ing result. '

Proposition 5. Let A be a D-order, I' a mazimal D-order containing A
and X a central simple K algebra. In order that I be A-invertible, it is neces-
sary and sufficient that I be both right and left A-projective and A = 6,.(I) = 6,(I).

Proof. Assume that I is A-invertible. Then Proposition 4 implies that I
is right and left A-projective. Clearly, 6,(I)2 4.

Let @ be and element of §.(I). Then IzCI and (A:I),InC(A: I),I; ie.,
Ax € 4, since I is invertible. Thus # is in A and 6,(I) = A. Similarly, 0,(I) = 4.

Conversely, assume I is right projective. Define the map

o: Hom, (I, 4) ®, I - Hom, (I:1I)

by setting o(f ® m)(n) = f(n)m for f in Hom, (M, A) and m, n in A. Since I
is right projective, ¢ is a two-sided Hom, (I, I)-isomorphism, ([1], proposit-
ion A-1). Set I*= (A:1I),~Hom, (I, A) and consider the commutative diag-
ram,

I®,I*—° sHom, (I, )
P

) l /

II*

where 0 is the mapping defined by the universal mapping property of the
tensor product, and y is defined by y(w)z=wz for w in II* and = in I.
Since ¢ is an isomorphism, both § and y are isomorphisms. Thus we have the
sequence of /-isomorphisms:

IT* ~ Hom, (I, I) = 0,(I) = 4.

Nothe that II*ICIACI, so II*CO,(I) = A. Hence II*= A. Similarly I*I = A4
and I is invertible.

Remark. If I is full two-sided for two orders 4 and £, then since 6,(I)
and 6,(I) depend only on I and X, I can only be invertible in one of the
orders A4 and Q.
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Lemma 6. D isa Dedekind domain, I is full two-sided A-ideal. Let I ,,,
Ay ... denote completion at a prime P of D. Then I, is A, - invertible if and
only if I is A-invertible.

Proof. Since D is DEDEKIND domain, I is reflexive and I = (I, , where
P

the intersection runs over all the maximal primes P of D. Also, I, =4,
for all but a finite number of primes P. Soif each I, is invertible by I, in 4,
set J = ﬂJ(P, and consider IJ. Clearly, (IJ), = 4, for all P, s0 A= ﬂ/lu,,

=1J. Gonversely, if Iis invertible by J in 4, then (IJ), = I, J, = A(I,)
all P. Hence, I, is invertible in A, for all P,

Theorem 7. Let D be a Dedekind domain with quotient field K and
let 2 be a central simple K-algebra. Let I' be an order in X. Then I' is a mamim-
al D-order if and only if every full two-sided ideal I' is invertible.

Proof. Let I' be maximal: then I" is left and right hereditary ([1],
theorem 2.3), so every ideal I is both left and right projective. Since I is
maximal, I'=0,(I) = 0,I) for any full two-sided I-ideal I. Therefore by
Proposition 5 I is [-invertible.

Now assume that every full two-sided [-ideal is [invertible. Then by
Lemma 6 I is I-invertible if and only if I, is I, -invertible for all maximal
primes P of D. Since I'"is a maximal order if and only if I, is a maximal D,
order in X, for all maximal primes P in D, it is sufficient to prove the theorem
for a complete discrete rank one valuation ring.

Assume D is a complete discrete rank one valuation ring. Liet I be a full
two-sided I'-ideal. If I is idempotent and J is its inverse, then

I=IA=IlJ=I=1J=4.

Hence no nontrivial full two-sided I-ideal is idempotent. The JACOBSON rad-
ical N of I'" is two-sided so by Proposition 4 it is right and left projective.
By ([6]: lemma 3.6), I' is herediraty; so by ([6]: Theorem 1.7), I" is 2 maxim-
al order.

Corollary 8. X is a central simple K-algebra. I' is ¢ maximal D-order
in X. Bvery full two-sided I'ideal is a unique product of mawimal full two-sided
integral T-ideals. Further, the full two-sided ideals of I" form an Abelian group.

Remarks. The last statement of the corollary is known, ([7], theor-
em 7; p. 128). However, its proof is immediate from the proof of the first
statement of the corollary so is included.
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Proof of Corollary. Let I be a full two-sided integral ideal of I
Let M, be a maximal integral ideal such that IC M,. By Theorem 7 M;*
exists so ICIM'CI. If I =IM7* then I'=I"I=1I"'IM;*; a contradic-
tion. Hence I cIM['. If IM ‘s I, there is a maximal integral ideal M,
such that IM;'C M,; as above we get IM;*CIM* M;’. Since I" is Noeth-
erian, this process must stop. Hence, there are maximal ideals M, ..., M,
such that IM;* M .. M *=1ie, I=M, M, _,.. M,.

Now let I be any ideal. Let @ ={sel:IzCI}. @ and IQ are integral
I-ideals such that @=M,.. M, and IQ=N, .. N,. Then I =N, ... N,
MM

To show the uniqueness, we will first show that the multiplication of max-
imal I-ideals is commutative. Clearly, in view of the fact that every ideal is
2 product of maximal ideals, multiplication of ideals is commutative.

Let M and N be maximal [-ideals. If M = N, then their multiplication
commutes. If M = N, then by the first part of the proof MNN = MI for
some ideal I. Then MIC N, so ICN. Hence M NN = MN. Clearly, MN N =
= NM follows by symmetry.

Now the classical proof of uniqueness can be applied, ([10], lemma 5,
p. 272).

4. - Invertible ideals in division algebras.

Throughout this section D will be a complete discrete rank one valuation
ring.

As was noted before, invertibility is not always equivalent to projectivity.
However, when we are considering division algebras we have the following.

Theorem 9. Let B be o finite dimensional division K-algebra. Let A
be D-order in R, and let I be a full two-sided A-ideal. Then I is A-invertible
if and only if I is both right and left A-projective.

- Proof. If Iis A-invertible, Proposition 4 shows that I is both right and
left A-projective.
 If I is left A-projective then since D is complete, we can apply ([3), theor-

em 77.1) to obtain that I is A-isomorphic to a direct sum ® Al, with I, an
i=1

idempotent in 4. However, since every idempotent in /A is an idempotent in R,

and since a division algebra has no nontrivial idempotents, Al, = A. Thus
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I~ A, and there is a » in A such that I= Av. In the same way, using the
fact that I is right A-projective, there is a « in A such that I == ud. Since
O,(I) = 0,(AV) = A and 6,(I) = 0,(uAd) = A, Proposition 5 implies that I is
A-invertible.

5. - Structure theory.

This section will eonsider the structure theory of invertible ideals of orders
when D is a complete discrete valuation ring. To this end, some background
material will be required from [3]. For completeness we will give the essential
definitions and results needed from [3] but will refer to that paper for the
details.

We let K denote the quotient field of D and let & be a generator of the max-
imal ideal of D. Let X be a finite dimensional separable K-algebra. Let A
denote a D-order in X and let A= AfzA. Let

I=0,+10,+..+1

be a decomposition of ] into primitive orthogonal idempotents. Then since D
is a complete discrete valuation ring, there are primitive orthogonal idem-
potents I, ..., I, in A4 which map to [, ..., I, by the natural map 4 -4 and
such that

Il=1+..+1.

We say that primitive orthogonal idempotents I, and I; in 4 are equival-
ent if
(T, AL)(E; AL) =1, A1, .

This is an equivalence relation, and we will write I, ~ I; to denote the equiv-
alence.

A D-order A in X is said to be reduced if its identity has a decomposition
into primitive orthogonal idempotents, 1 =1, ...+ 1,, such that no two
distinet I, and I; are equivalent.

For the D-order A in 2| let f, ..., fr denote representatives of the distinet
equivalence classes of equivalent idempotents. Set f=7f 4+ ...+ f. and set
A =7fAf; then A a reduced order in fXf. The map I >I=fIf=INA of
two-sided fractionary A-ideals to two-sided -ideals is one-to-one and pres-
erves products, sums and intersections. We will let m; denote the number
of distinct idempotents in the its equivalence class of equivalent idempotents.
Example 12 will show that m, is not necessarily equal to m;.
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The following theorem is the structure theorem for invertible ideals in
reduced orders. The proof is essentially contained in the proof of Theorems 5
and 6 of [3].

Theorem 10. Let I be a full two-sided in the reduced D-order A. Then T
is A-invertible if and only if there is a permutation o of the set {1,2, ..., &} and
an element w of 1 such that T=ud = Aw, v =, + ... & @, with x; an element
of : 1ty and x,f,Af;=F:Tf;. Further, the inverse J of T is of the form J=
yA = Ay, where y is of the form y =1y, ..+ vy,, ¥, n fowy Jf: and @y, = f:,
Y:%;, =fy: In particular, T and J are A-free on one generator.

Now we consider the case where 4 is not reduced. It is easy to see that
if I, 1, I;, I, are idempotents in A such that I, ~7; and I,~1,, then [, Al ~
glﬁ/ll; as D-modules. So we have I written as follows:

I= zﬂlaﬂ o~ g’mimifilfi

where I,~f;, l;~f; and the multiplier m;m, signifies that there are m,m;
terms that are isomorphic to f,If;: Further by Theorem 9,

I~ Z (; fa(.') Af;)m;m;
i

where the x; are the elements described in the statement of Theorem 10.

In view of Theorem 10, one might hope that I is A-cyclic. However, since
the m, are not necessarily equal, we do not have cyclicity (cfr. Examples 12).

When D is a DEDEKIND domain, one can reduce congiderations to the case
of a complete discrete valuation ring by localizing at the maximal primes of D.
However, the structure of the invertible ideals now becomes rather complic-
ated. There are two reason for this: first, as already noted, the m, may be
different; second, on localization we may obtain different sets of nonequival-
ent idempotents. For there reasons it appears to be best to give the siructure
in terms of local conditions.

6.- Examples.

In the examples which follow, A is a discrete rank one valuation ring, K
is the quotient field of A, = is a generator of the maximal ideal of 4, X,
is the K-algebra of n X#n matrices with coefficients in K, A is an order in X,
We will write A = (Ax"##), where this notation means that the elements of
the (4, §) position are those elements in the A-ideal generated by =" .
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Example 11. Set

A A A A
F:[A A]’ A:[m A}’
and
7 ad A
R mwd |’

From ([8], theorem 2.6) A is hereditary, so I is both right and left A-projective.
I=gl'= I'n, so Iis I-invertible. Also, 6,(I) = 0,(I)=I", but

A w4 arA A
(A:I), = [A n‘lA] and (A: 1), == [ 4 4 ]

Hence, by Proposition 5, I is not A-invertible. Therefore, there is a full two-
sided A-ideal which is both right and left A-projective with 6,(I) = 6,(I) but
is not A-invertible.

Example 12. Set

4 4 A md 4 =mA
A= |mAd A =zA and I= 34 n4d =4
A 4 A 7A A zmA

Let I, denote the usual matrix idempotents. Then A is not reduced since
lyy~l,. I is A-invertible by

A =tA A
J=1 A A A
A w4 A

Set f=1,,+1,, and A= fAf: i.e.,

. [ 4 4
T |md A
Further,
T [va A] .
nwA  7wA|

18
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Now set
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w—01
w0}’

and then we have I = A» =aA. I is not A-cyclic. To see this, assume the
contrary. On noting that I®==m/, we see that there are elements, a, b in 4
such that #?®= ma, 2lz =m. Then (det @) (det b) =1 and (det x)% = =¥(det b),
Let (det ) = =n*. Then 2s =3, a contradiction.
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