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VIJENDRA SINGH (%)

On a Relation Between Harmonie Summability

and Riemann Summability. (**)

1. - Definitions and notations.

Let zan be a given infinite series with s, as its n-th partial sum. We denote
by 8} the n-th CEsAro sum of order & of this series. An infinite series Ya,
is said to be (R, 1) summable to the sum s, if the series

i sin nt
129
ne—1 nk

(1.1)

converges in some interval 0 <t< %, andif

hd sin nt

0 lim A, = §
(1.2) t—>0 ngl nt

The summability (R, 1) is sometimes referred to as LEBESGUE summability
The series zan is said to be (R,) summable to the sum. s, if the series

2 2 sin ni

(1.3)

converges in some interval 0 < ¥ < %, and if,

. 2 2 sin nt
1.4 limé- > s = §
( ) t—>0 T ngl " nt

(*) Indirizzo: Department of Mathematics, Hindu College, Moradabad, India.

(**) Ricevuto: 24-11-1970.
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It is said to be (0, K)-summable to s, if

= n

k
(1.5) lim §5/Ak=s  where A= (n - ) (K> —1)
and harmonic summable to the sum s, if {,—s as n—oco where,

T, 1 kid 1
Z Pr—vSs, Pn =

= log (n+1) = log (n+1) /< n 1 H To = 0.

(1.8) ln

It is well known that summability (R, 1) and (R,) are not comparable [1].
Concerning (R, 1) summability and (R;) summability SzAsz ([3], [4]) has
proved the following

Theorem A. If Ya, is (0,1—«) summable for some positive «< 1,
and if

(1.7) aﬂzzn [8,%] = O(n*=) as # ~>oo,

Vel

then the series »a, is summable by (R, 1) and (R,) methods.
Recently VARSENEY [5] has proved an analogous theorem for harmonic
summability. His result is as follows:

Theorem B. If 3 a, is harmonic summable and if
1

(1.8) >|T,— Thy| = O(log n) a8 n—>oo,

Y}

then Y a, is LEBESGUE summapble,
1
Quite recently author [6] has proved the following theorem for (R;) sum-

mability.

Theorem C. If Z a, is harmonic summable and if

n

(1.9) > \T,| = 0(logn) (n — o0)

1

then > a, is (R,) summable.
n=1

The question arises as to whether the condition (1.9) can be replaced by
a lighter condition (1.8).
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The object of this Note is to answer this question in affirmative.
In what follows we shall prove the following

(==}
Theorem. If Za" 18 harmonic summable and if,
1

((1.10) Wo=>|T,—T,,| = 0(logn) a8 N —oc

V=1

then Y a, is (R,) summable.
1

2. — We set

sd
P wn)—l —_ Z ¢, "

n=0

(

2
ins

then we have

(2.1) Gn = (T — Tpy)
V=]
and
(2’2) Sn = zcn—vT'n-
V=1

It is well known that [2] ¢, = 0(1/(nlog?n)).

n 1
(2.3) s =U,Zjocv =0 (logn) .

We may assume without loss of generality that

T, = o{logn) as % —> oo,

3. — We require the following lemmas for the proof of our theorem.

-] n
Lemma 1[5]. Let K,=) b,fv, whereb,=T,— T, and > |T,—T,,| =
1

v==n

= O(logn), then K,=o(logn/n). Also K,= 3 K,= o(logn).

16
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Lemma 2 [5]. Let

©  sin (n - )t
nv(t) "’“"go Cn 7_1' +““‘v"“"‘
then
1 1
@1 =0 (vloo-T) ’ r= H ’ (0<t<1), (@>1).

Lemma 3 [4]. If the series Y s, (sinmni/n) converges in 0 < ¢<{, then;

n=1
@, sin ni ki
(3.2) D s = 2 @ 0u(t)
n=1 n 1
where
> sin vt
(3.3) onlt) = 3 —
vV=n

©

Conversely, if s,/n—0, then the convergence of Y a,g.(f) implies (3.2).
1

Lemma 4. If B,(t) =3 ¢, 0ntolt), then

n=0
(3.4) B.(t) = O(1fwtlog T), v>1 where T = [1[t].
Vd o
Proof. Tet fu(t) =(2 + 3 )CaQuiolt) = U+ U,, say then,
n=0 ne= P41

I

it 1 1
U, 0(,,:‘;_,_1 nlog®n ) {n 4 'v)t)

1 2 1 1
- 0((4) 4+ T4 1)t ,,=§+1 'n,logzn) - ('utlog T) !

7
Ul - 2 Cn Qn+‘v(t) .

n=20
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Applying ABELL's transformation to U; we have

-1

U, = z dn 4 0p1o(t) + dy Or+(t) =

n=0

_0 Tf 1 o1 0 1 1 )-—0 1
- o log (n+1)  (n ¥+ v) + lo__“rg_T (v -+ Tt - vtlog T )’

bence U,+ U,= 0(1/(vtlog T)).

Lemma 5.
1 t
AB,(8) = 0 (v Tog T) (5] and A2B,(t) = O(v Tog T) [61.
4. - Proof of the theorem.
Since
w13
7'/ - ;2; v;) cn—vTv
. } n 1 L _1 2=lo(logn + k) -
T ,,goo((n — o) log? (n ——v)) o(logv) = n ,go It log?k -

SIS i) —on
E=A 0 klogk B = o),

therefore by virtue of Lemma 3 it is sufficient to prove that > a,04(t)

n=1

converges and its limit as ¢— 0 is equal to zero. Using (2.1) we have

n

_z (/2% Qn(t) - 2 Qn(t) z Crns (Tv - T‘v——l)

v=1

(4.1) - ®
— 2 (Tv bmanad T’v—-l) z cn—v Qn(t) .

The change of order of summation is justified for

©

1T Tl 3 0wt = O3 | 2= T 1ot 3 Jea])
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= 0(X | Ty — Tos|1/v) (for fixed positive )

v=1

. =l W, Wa) »=l logw logn)
‘O(vglv(w T _n_) ‘0( u%w(v%—l)) +0( n )‘" o)

Thus the series in (4.1) converge absolutely.
Let

-

F(t) = z (Tv— Tu—l) ch-—in(t) .

Pe=l n=v
Now we choose a positive number u, put » = [u/t] and write

0

S (T T\ Bull) = (5 + ST~ Toms) Bl

y=1 n+1

-

=V, +V,, say.

From (3.4) we have

1 21
V,= O(tlogT"%; ]T,,—~Tv_1|).

Using ABEL’S transformation we have
g

1 & W, Wa
V=0 {tlogT ( ,2:1 v + 1)——71+ 1)}
- logn 1 2. logw
o O(ntlog T) - O(t log T,,%l (v + 1))

logn \  f(logu
O(ntlogT) _O( u )

Furthermore
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n

V= z (T, — T —l)ﬁv(t) =

v=1

= > (K, — K1) v Bult) (Lemma 1)

= z K’v {'D z Cn Onpy — (/D - 1) z Cn Qn—l—v—l}— ”Kﬂ-}-lﬁn(t)
1 =0

=0

= z K, z Cn Oty — Z K, Z env 4 Ontv—y — NIy Bu(2)
1 n==0 1 n=0

1 o (logn)
ntlog T

L logn logn
o 21’ Ko B+ 0(log T) - O(nt log T) )
Applyng ABEL’s transformation twice, to the same sum we have

3 Ky fosll) =

n—2 v

=3 S fealt) + 3 Kndfoodlt) + 3 Fuoslt) =

ot t ks 1 logn
=0 ( 21’ vlogw (v —1) log T) + o(méllogm (n —2) logT) + O(ntlog T) )

Therefore
ntlogn logn logn
Vi= 0( logT ) T 0(log T) + O(fntlogT)
= o(u log u) + o(log u) + o(log p/y) .
Hence
V.4 V.= 0(log ulu) + o(u log u) as t— 0.
Consequently,

lim sup |F(t) < O(log u/p) ,

t—0
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4 being arbitrarily large, we get

Iim F(t) = 0 .

t—>0

This completes the Proof of our Theorem.
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