LAURA GUIDOTTI (*)

Sulla divisibilità dei grafi completi. (**)

1. – Sia C_n il grafo (semplice) non orientato completo con n (intero, $\geqslant 1$) vertici e, quindi, m=n(n-1)/2 lati o spigoli. Due grafi parziali (¹) disgiunti G_1 , G_2 di C_n si dicono complementari (rispetto a C_n) se la loro unione (²) $G_1 \cup \cup G_2 = C_n$. Se G_1 risulta isomorfo a G_2 (³) (in simboli $G_1 \simeq G_2$) G_1 e G_2 si dicono autocomplementari.

H. Sachs (4) e G. Ringel (5) hanno studiato, quasi contemporaneamente, il problema della costruzione di ogni grafo finito (semplice) G autocomplementare.

In questa Nota si studia un problema che generalizza quello suddetto dei grafi autocomplementari, e precisamente il problema della divisibilità di un grafo completo C_n per un numero intero $m \ (\geqslant 2)$.

 C_n si dice divisibile per $m \ (\geqslant 2)$ se si possono trovare m grafi parziali (a due a due disgiunti) $G_1, G_2, ..., G_m$ tutti fra loro isomorfi tali che:

$$G_1 \cup G_2 \cup ... \cup G_m = C_n$$
.

- (*) Indirizzo: Istituto di Geometria, Università, Bologna, Italia.
- (**) Lavoro eseguito nell'ambito dei contratti di ricerca del C.N.R.. Ricevuto: 11-XI-1971.
- (1) Si veda: L. Muracchini, *Introduzione alla Teoria dei Grafi*, Ed. Boringhieri, Torino 1967 (cfr. p. 34).
- (²) $G_1 \cup G_2$ è il grafo con n vertici che contiene come spigoli tutti quelli di G_1 e di G_2 .
 - (3) Si veda: L. Muracchini, opera citata in (1), p. 30.
- (4) Si veda: H. Sachs, Über selbstkomplementäre Graphen, Publicationes Math. Univ. Debrecensis 9 (1962), 270-288.
- (5) Si veda: G. Ringel, Selbstkomplementäre Graphen, Archiv Math. 14 (1963), 354-358.

Ovviamente per m=2 si ha il caso di due grafi G_1 , G_2 autocomplementari. In quest'ultimo caso è stato stabilito, nelle opere citate in (4) e in (5), che:

- a) C_n è divisibile per 2 quando, e solo quando, il numero dei vertici n è della forma 4k oppure 4k+1 (k intero, $\geqslant 1$).
- b) dati n vertici (con n=4k, oppure n=4k+1) v_i (i=1,...,n), per ottenere un divisore di C_n secondo l'intero m=2 è necessario e sufficiente determinare una permutazione ω , degli n vertici v_i , la quale: 1) tenga fisso al più un vertice; 2) sia scomponibile in cicli disgiunti di lunghezza 4 o multipla di 4 soltanto.

Infatti G_1 si ottiene allora applicando iterativamente ω a due vertici qualsiasi (v_r, v_s) e prendendo come spigoli di G_1 stesso quelli di estremi (v_r, v_s) , $\omega^2(v_r, v_s)$, $\omega^4(v_r, v_s)$, e così via. Se gli spigoli ottenuti applicando ripetutamente ω a (v_r, v_s) non esauriscono tutti gli spigoli di C_n (considerando ovviamente quelli ottenuti sia mediante le potenze pari, che formeranno il grafo parziale cercato, che quelle dispari di ω) si deve ripetere l'operazione partendo da una seconda coppia di vertici (v_h, v_k) estremi di uno spigolo non ancora ottenuto, e così via, fino ad esaurire tutti gli spigoli di C_n . Inversamente, ogni grafo autocomplementare G_1 si ottiene nel modo indicato.

Come si vede, il problema è ricondotto a quello di determinare le permutazioni ω del tipo indicato: attualmente non si sa, per n=4k oppure n=4k+1, quante siano le permutazioni ω e quanti siano i grafi con n vertici autocomplementari (distinti a meno di isomorfismi).

È stato poi dimostrato che i grafi autocomplementari G_1 e costruiti nel modo visto sono connessi.

Si vede poi facilmente che un grafo siffatto è un albero (6) solo per n=4, infatti il numero degli spigoli di G_1 è n(n-1)/4 quindi, > n-1 per n>4, mentre l'uguaglianza si ha solo per n=4. In questo caso C_n si può dividere in due alberi isomorfi in un solo modo (gli alberi risultano essere catene).

2. – Si dimostra ora che, nel problema della divisibilità di un grafo completo C_n per un numero m > 2, che sia primo con n oppure con n-1 (7), si può dare una condizione necessaria e sufficiente analoga alla a) del n. 1. Ma nel caso m > 2 la costruzione che verrà esposta non fornisce sempre tutti i modi possibili di dividere un grafo completo secondo l'intero m > 2: ciò verrà

⁽⁶⁾ Un «grafo connesso» è un albero se e solo se il numero dei suoi spigoli è n-1 (essendo n quello dei vertici). Cfr. L. Muracchini, opera citata in (1), p. 55 e seguenti.

⁽⁷⁾ Nel caso m=2 è chiaro che m è necessariamente primo con n oppure con n-1 perchè di questi due numeri uno è pari e l'altro è dispari.

mostrato nel n. 3. Inoltre, a differenza di quanto accade per m=2, tale costruzione non fornisce necessariamente divisori che siano connessi. Si dimostra dunque che:

Affinchè un grafo completo C_n sia divisibile per m, dove (m, n) = 1 oppure (m, n-1) = 1, è necessario e sufficiente che l'intero n(n-1)/2 sia multiplo di m.

La necessità della condizione è immediata: se C_n è divisibile, i suoi divisori $G_1, G_2, ..., G_m$ avranno (essendo isomorfi) tutti lo stesso numero r di spigoli. Poichè sono disgiunti, m r = n(n-1)/2.

Prima di passare alla sufficienza premettiamo alcune semplici osservazioni. Se (m,n)=1 la condizione precedente implica che sia n=km+1; mentre se (m,n-1)=1 si deve avere n=km. Ciò vale a maggior ragione se, in particolare, m è un numero primo p>2 o una sua potenza. Infine, se m=2 (o una potenza di 2) si ritrova la condizione del n. 1, cioè n=2km oppure n=2km+1.

Venendo ora alla condizione sufficiente, si sceglie una permutazione ω dei vertici di C_n (che indicheremo con gli interi 1, 2, ..., n) che goda delle due seguenti proprietà:

- 1) Tiene fisso al più un vertice di C_n ;
- 2) si scompone in cicli disgiunti tutti di lunghezza m o multipla di m se m è dispari, di lunghezza 2m o multipla di 2m se m è pari.

Ciò è possibile nelle ipotesi fatte, perchè: se m è pari ed n=2h pari, dovendo m dividere h (2h-1) ed essendo primo con 2h-1, risulta h=km, cioè n=2km; se invece n=2h+1, dovendo m dividere (2h+1)h ed essendo primo con 2h+1, risulta ancora h=km, cioè n=2km+1. Se m è dispari, poichè deve essere n=km, oppure n=km+1, sarà possibile avere una ω scomposta in cicli di lunghezza m o multipla di m.

Si sceglie poi uno spigolo s=(i,j) di C_n ; la ω opera su s nel modo ovvio, cioè $\omega s=(\omega(i),\omega(j))$. Applichiamo ripetutamente la permutazione ω ad s fino a che non si riottenga lo spigolo s: date le proprietà di ω , ciò non può avvenire che in corrispondenza ad una potenza di ω multipla di m; sia rm il relativo esponente. Consideriamo la tabella seguente:

(1)
$$\begin{cases} s, & \omega s, \cdots, \omega^{m-1} s \\ \omega^m s, & \omega^{m+1} s, \cdots, \omega^{2m-1} s \\ \vdots & \vdots & \vdots \\ \omega^{(r-1)m} s, & \omega^{(r-1)m+1} s, \cdots, \omega^{rm-1} s \end{cases}$$

In ciascuna colonna sono stati posti spigoli ottenuti operando su s mediante potenze di ω i cui esponenti sono congrui ad un medesimo resto modulo m. Se la tabella (1) non esaurisce tutti gli spigoli di C_n si sceglierà uno spigolo s' fra quelli non compresi nella tabella (1) e si opererà su s' come per s, e così via fino ad esaurire tutti gli spigoli di C_n .

Dimostro ora che l'insieme degli spigoli contenuti nelle *i*-esime colonne (i=1,...,m) delle tabelle costruite nel modo indicato costituisce un grafo parziale G_i di C_n che è un divisore di C_n secondo l'intero m. A tale scopo basta far vedere che i G_i sono disgiunti e isomorfi: da quanto si è detto segue senz'altro che la loro unione è C_n . Si osservi intanto che due tabelle diverse, del tipo della (1), non contengono mai per costruzione spigoli comuni. Infatti se uno spigolo della tabella generata da s figurasse anche in quella generata da s' si avrebbe:

$$\omega^h s = \omega^k s'$$

e quindi

$$s' = \omega^{h-k} s$$
.

Dunque s' dovrebbe figurare nella tabella (1), contro le ipotesi. Si osservi ancora che due colonne della medesima tabella sono sempre disgiunte; infatti se vi fosse un elemento comune si avrebbe:

$$\omega^h s = \omega^k s$$
 con $h - k \not\equiv 0 \pmod{m}$,

cioè

$$\omega^{h-k}s = s.$$

Ora sia s=(i,j); per il verificarsi della (2) dovrà essere:

(3)
$$\omega^{h-k}(i) = i, \qquad \omega^{h-k}(j) = j,$$

oppure

(4)
$$\omega^{h-k}(j) = i, \qquad \omega^{h-k}(i) = j.$$

Poichè, per ipotesi, ω tiene fisso al più un vertice di C_n , le (3) si possono verificare solo se ω^{h-k} è la permutazione identica, ma ciò implica $h-k\equiv 0\pmod m$. Dunque le (3) non si possono verificare. Se si verificassero le (4) si potrebbe supporre che il vertice i non sia tenuto fisso da ω (altrimenti si ragionerebbe su j che non potrebbe essere tenuto fisso anch'esso da ω). Dalle (4) segue che

$$\omega^{2(h-k)}(i) = i$$
 cioè $\omega^{2(h-k)} = 1$ (identità).

e quindi che 2(h-k) è multiplo di m. Se m è dispari ciò implica che h-k è multiplo di m, contraddicendo l'ipotesi $h-k\not\equiv 0\pmod m$; se m è pari allora 2(h-k) è addirittura multiplo di 2m (perchè in questo caso ω si scompone in cicli disgiunti di lunghezza 2m o multipla di 2m) e quindi dovrebbe ancora aversi $h-k\equiv 0\pmod m$. In conclusione i grafi parziali G_i sono a due a due disgiunti.

Resta ancora da dimostrare che i G_i sono isomorfi: per questo basta osservare che l'insieme degli spigoli di G_n dato da ω^{m-i} G_i coincide con l'insieme degli spigoli di G_1 e perciò $G_1 \simeq G_i$. Infatti uno spigolo di G_i della tabella (1), ad esempio, è del tipo $\omega^h s$ con $h \equiv i \pmod{m}$; esso viene trasformato da ω^{m-i} nello spigolo $\omega^{h+m-i}s$ e poichè $h+m-i\equiv 0 \pmod{m}$, quest'ultimo spigolo appartiene a G_1 .

Il Teorema è così dimostrato.

Si possono fare le seguenti osservazioni che riusciranno utili in seguito: ciascuno dei divisori G_i ammette come automorfismo la permutazione ω^m (che non è necessariamente l'identità); da quanto precede non risulta che i G_i siano necessariamente connessi.

3. – Nel caso m=2, H. Sachs e G. Ringel (*) hanno mostrato che, inversamente a quanto esposto nel n. 2, ogni divisore secondo di un grafo completo C_n si può ottenere mediante la costruzione indicata. Per dimostrare questa affermazione si utilizza quanto segue: se C_n è diviso in due grafi parziali isomorfi G_1 e G_2 disgiunti e se ω_1 è la permutazione tale che $\omega_1G_1=G_2$, allora necessariamente $\omega_1G_2=G_1$ cioè $\omega_1^2G_1=G_1$ e quindi ω_1^2 è un automorfismo di G_1 .

Nel caso m>2 il ragionamento si può ripetere (e quindi invertire quanto si è detto nella costruzione del n. 2) se si verifica quanto segue: C_n è diviso in m grafi parziali $G_1, G_2, ..., G_m$ isomorfi e a due a due, disgiunti ed esiste una permutazione ω_1 tale che:

(5)
$$\omega_1 G_1 = G_2$$
, $\omega_1 G_2 = G_3$, ..., $\omega_1 G_{m-1} = G_m$, $\omega_1 G_m = G_1$.

 ω_1^m risulta dunque essere un automorfismo di ciascuno dei G_i . Ma per la divisibilità di C_n non è richiesto a priori quanto precede: basta, infatti, che esistano m permutazioni ω_i $(i=1,\ldots,m)$ per le quali risulti

(6)
$$\omega_1 G_1 = G_2$$
, $\omega_2 G_2 = G_3$, ..., $\omega_m G_m = G_1$,

senza che le ω_i siano tutte fra loro identiche.

⁽⁸⁾ Si veda: H. Sachs, opera citata in (4); G. Ringel, opera citata in (5).

Viene ora mostrato su di un esempio che in effetti il caso (6) si può presentare e questo prova che, per m > 2, la costruzione del n. 2 non fornisce tutti i possibili divisori di un grafo completo C_n che sia divisibile secondo l'intero m(naturalmente, due divisioni di un grafo C_n verranno considerate distinte o meno a seconda che esista o meno un automorfismo di C_n che le muta l'una nell'altra (9)). Per ottenere l'esempio voluto considereremo il caso n=6, m=3: la condizione che n(n-1)/2=15 sia divisibile per 3 è soddisfatta e pertanto il grafo completo C_6 è divisibile per 3. I divisori $G_1,\,G_2,\,G_3$ avranno 6 vertici e 5 spigoli e, pertanto, se sono connessi debbono essere alberi (o, in particolare, catene). Con analisi diretta (che non offre difficoltà) sono state determinate tutte le divisioni di C_6 in tre catene, considerando distinte due divisioni se non si riducono l'una nell'altra mediante un automorfismo di $\mathcal{C}_{\mathsf{G}}.$ Si può dunque supporre che la prima delle tre catene G_1 sia la $\{1, 2, 3, 4, 5, 6\}$. Si trova che vi sono 8 modi di dividere C₆ in tre catene: essi possono venire raggruppati in 4 gruppi di due divisioni in base alla considerazione dei due vertici estremi delle catene (che per G_1 sono sempre 1 e 6); li indichiamo qui di seguito:

$$(I) \begin{cases} G_2 = \{2, 4, 1, 6, 3, 5\}, & G_3 = \{4, 6, 2, 5, 1, 3\} & (2,5) \text{ e} \\ G_2 = \{2, 4, 6, 1, 3, 5\}, & G_3 = \{4, 1, 5, 2, 6, 3\} & (3,4); \end{cases}$$

$$(II) \begin{cases} G_2 = \{2, 4, 6, 3, 1, 5\}, & G_3 = \{3, 5, 2, 6, 1, 4\} & (2,5) \text{ e} \\ G_2 = \{2, 6, 4, 1, 3, 5\}, & G_3 = \{3, 6, 1, 5, 2, 4\} & (3,4); \end{cases}$$

$$(III) \begin{cases} G_2 = \{2, 5, 1, 4, 6, 3\}, & G_3 = \{4, 2, 6, 1, 3, 5\} & (2,3) \text{ e} \\ G_2 = \{2, 4, 6, 1, 5, 3\}, & G_3 = \{4, 1, 3, 6, 2, 5\} & (4,5); \end{cases}$$

$$(IV) \begin{cases} G_2 = \{2, 5, 3, 1, 6, 4\}, & G_3 = \{3, 6, 2, 4, 1, 5\} & (2,4) \text{ e} \\ G_2 = \{2, 6, 3, 5, 1, 4\}, & G_3 = \{3, 1, 6, 4, 2, 5\} & (3,5). \end{cases}$$

Come è facile constatare, soltanto le due divisioni del gruppo (I) si ottengono con la costruzione del n. 2, rispettivamente mediante la permutazione $\omega = (1,2,4,6,5,3)$ e mediante la $\omega = (1,2,4)$ (3,6,5). Le sei divisioni degli altri tre gruppi non si ottengono con la costruzione predetta, ciò dimostra quanto è stato affermato sopra.

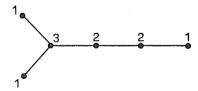
^(*) Cioè una permutazione qualsiasi dei vertici di C_n , dato che tutte le permutazioni sono automorfismi di C_n .

Indichiamo anche un esempio di divisione di C_6 in tre grafi parziali non connessi ottenuta mediante la costruzione del n. 2: si tratta della divisione ottenuta mediante la permutazione $\omega = (2, 3, 4, 5, 6, 1)$ e partendo dagli spigoli s = (1,2), s' = (2,4) s'' = (6,3). Le tre tabelle analoghe alla (1) del n. 2 sono ora:

$$\left\{ \begin{array}{l} s = (1,2) \; , \qquad \omega \; s = (2,3) \; , \qquad \omega^2 \, s = (3,4) \; , \\ \\ \omega^3 \, s = (4,5) \; , \qquad \omega^4 \, s = (5,6) \; , \qquad \omega^5 \, s = (6,1) \; ; \\ \\ s' = (2,4) \; , \qquad \omega \; s' = (3,5) \; , \qquad \omega^2 \, s' = (4,6) \; , \\ \\ \omega^3 \, s' = (5,1) \; , \qquad \omega^4 \, s' = (6,2) \; , \qquad \omega^5 \, s' = (1,3) \; ; \\ \\ s'' = (6,3) \; , \qquad \omega \; s'' = (1,4) \; , \qquad \omega^2 \, s'' = (2,5) \; , \\ \\ \omega^3 \; s'' = s'' \; , \qquad \omega^4 \, s'' = \omega \, s'' \; , \qquad \omega^5 \, s'' = \omega^2 s'' \; . \end{array} \right.$$

Infine, per terminare, consideriamo la questione della divisione di C_6 in tre divisori connessi più in generale. Intanto affinchè un grafo completo C_n sia divisibile in m alberi deve risultare n(n-1)/2 = m(n-1) e quindi n=2m; se ciò si verifica sono soddisfatte le condizioni del Teorema del n. 2 poichè (m, 2m-1)=1 e pertanto la n=2m è anche sufficiente per la divisibilità di C_n in m divisori. Se fra questi ve ne sono di connessi, allora sono alberi; si può tuttavia mostrare facilmente che fra i divisori alberi di C_{2m} non possono mai aversi i casi di alberi con un vertice di grado g>m. Infatti i vertici di C_{2m} sono tutti di grado 2m-1; se un vertice fosse di grado g>m per un divisore albero, allora non tutti i rimanenti m-1 divisori alberi potrebbero contenere quel vertice, altrimenti esso risulterebbe per C_{2m} di grado g+m-1> m+m-1=2m-1 e ciò è assurdo.

Nel caso m=3 si verifica con analisi diretta di tutti i casi possibili che non soltanto non possono aversi divisori alberi con un vertice di grado 4 o 5, ma che nemmeno l'albero con i vertici di gradi 1, 1, 3, 2, 2, 1, che indichiamo



qui di seguito, può mai darsi come divisore di C_6 . Su questo ed altri problemi connessi ci ripromettiamo di ritornare in un altro lavoro.

