Riv. Mat. Univ. Parma (3) 1 (1972), 195-202

Ricuarp A. ALO

CHARLES A. CHENEY and ANDRE DE KORVIN (%)

The Vitali-Hahn-Saks Theorem
for Operator-Valued Linear Mappings. (**)

The VITaLi-HABN-SAKS theorem is a result from classical measure theory
concerning the convergence properties of a sequence of measures.

Let (X, 2, ) be a finite measure space (real or complex). Suppose that {».}
is a sequence of y-continuous finite measures such that, for every E in X, v,(#)
converges to a finite number »(#). Then:

(a) The measure », are uniformly p-absolutely continuous; i.e., for any
>0, there exists §>0 such that |u(E)| < 6 implies |v,(B)| <e for all n;

(b) If {H,}C X is a sequence of sets such that B,V E, where H,, is a set
of y-measure zero, then for any &> 0, there is p, such that [v.(&,)| <e
for p>p, and for all n;

{¢) The set function » is a measure on 2.

For references on this theorem, see DUNFORD and SCEWARTZ ([5]), p. 158,
theorem 2; p. 159, corollary 3; p. 160, corollary 4) and ZAANEN ([7], p. 332,
theorem 4).

This theorem has been extended to non-commutative integration theory
by J. AARNES [1] and C. AxEMANN [2]. In their results the measures are rep-
laced by normal linear functionals on a VoN NEUMANN algebra M. Positive
normal functionals are similar to positive measures in that they have the prop-

(*) Indirizzo degli Aubori: R. A. And, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15213, U.S.A.; C. A. CEENEY and A. DE KorviN, Indiana State
University, Terre Haute, Ind. 47809, U.S.A..

(**) Ricevuto: 6-XII-1971.
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erty of complete additivity, similar to the countable additivity property of
measures.

Let {f.} be a sequence of normal linear functionals on a VoN NEUMANN
algebra M. Suppose that f,(P) eonverges to a finite number f(P) for every
projection P in M. Then AArRNES and ARKEMANN proved the following:

(a) limf,(4)=f(4) exists for every 4 in M;
(b) The norms of the f,’s are uniformly bounded;
(e) fis a normal linear functional on .

In this work, we replace the normal linear functionals by normal linear
mappings @, from M into a second Vox NEUMANN algebra N. Assuming that
lim @,(P) exists in norm for every projection P in M, we show that lim
D, (4) = P(A) exists in norm for every 4 in M and that @ is a normal linear
mapping from M to N (Theorem 4).

We use a result of AARNES (Theorem 1) to obtain a type of uniform bound-
edness theorem (Theorem 3) useful in the proofs of Theorem 4 and 5. In Theo-
rem 5, we apply Theorem 4 to the special case when the @,’s are expectation
mappings.

I. - Notation, definitions and preliminaries.

Throughout we assume that M and N are two VoN NEUMANN algebras con-
tained in £(J€), the set of all bounded linear operators on & HILBERT space JC. If L
is any von NEUMANN algebra, by L, we will mean that unique BANACH space
whose dual space can be identified (as a BANAcCH space) with L; see S. SAKAT [6].

A linear map @ from M to N is called completely additive if whenever {P,}
is a disjoint collection of projections in M with sum TP, , then &(XP,) = XD(P,).

A linear map @ from M to N is called normal if for every increasing
directed set {4,} of positive operators in M with I‘E'b’ A, = A, then @(4) =
= l.g.b. D(4,).

We note that if @ is normal, then it is completely additive.

Suppose that N C M and that N contains the identity map I. A linear
map P is an ewpectation mapping of M on N if

(@) oI)=1I;

(b) AD(B)= B(4AB) for all A in N and B in M;
(c) @ is adjoint preserving;

(d) @ is positive.
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This is a generalization of the classical probabilistic notion of expectation map-
pings; for more on these abstract expectation mappings, see, for example,
A. pE Korvin [3].

Let & be a collection of continuous linear maps from M to N. The collec-
tion F is called wniformly weakly completely additive if the following condition
holds:

Suppose that {P,} is a downward directed commutative collection of pro-
jections in M with g-1.b. {P,} = 0 and suppose that  is in J&. Then for every
&> 0, there is a o, such that |(f(P,)®, )| <e for all fin & and a>o.

We now state the two main theorems of AArNES for reference.

Theovem 1. If F is a family of normal linear functionals on M and
if & is pointwise bounded on the projections in M, then F is uniformly bounded
on norm-bounded subsets of M.

Theorem 2. Let {f,} be a sequence of mormal linear fumctionals on M
such that im f,(P) ewists for every projection P in M. Let f(P) denote the limit
of f.(P) for every projection P. Then:

(a) f can be extended to all of M as a continuous linear functional;

(b) f is & normal linear functional.

Moreover, if L is a commutative von Neumann subalgebra of M and if T
denotes the set of projections in M, then

(e) the maps {g,={f.,|L NP} form an equicontinuous family at 0 for
the topology o(M, M) |L N P.

II. - The main results.

The following theorem is a type of uniform boundedness theorem similar
to Theorem 1. We reeall that since (N.)*= N, we can therefore consider IV,
as a subset of N¥.

Theorem 3. Let F be a collection of continuous linear mappings from M
into N with the property that o o @ is in M, for every g in N, and @ in §F.
Suppose F is pointwise bounded on the projections of M. Then F is uniformly
bounded on norm-bounded subsets of M.

Proof. Let P denote any projection in M. Then by hypothesis there
is a number M,> 0 such that |D(P)||<M, for every @ in F. Now let p



198 R. A. ALO, C. A. CHENEY and A. DE KORVIN [4]1
be in N,. Denoting ¢ - D by p,, we have
lea(P) | < el PP <o) M, = M,, .

For a fixed g in N, each g, is in M, by hypothesis; so by Theorem 1 the col-
lection F'== {o,|PF}, being pointwise bounded on the projections in M,
is uniformly bounded on norm-bounded subsets of M. If B denotes such a
set, then

lo(P@) | <M,

for every @ in F and # in B.
Thinking of @(x) as a continuous linear function @(x) on N,, we then have

—

[P(@)(0) | < M,

for every @ in F and » in B. This inequality holds true for every g in N,.
Hence by the Uniformn Boundedness Principle we find that the norms of the

mappings D(x) for @ in F and » in B are uniformly bounded; i.e., there is

——

an M,> 0 such that |@(@)|<M, for all Pin F and # in B. But |P@)]| =

= i[é(\w—iu since P(x) considered either as an element of N or as a mapping on
N.. has the same norm. Thus F is uniformly bounded on B. .

Note that the hypothesis of Theorem 3 is fulfilled if each @ in F is a
continuous normal linear mapping.

We now state the main theorem, which is a generalization of Theorem 2
and our generalization of the VITATI-HAHN-SAKS theorem.

Theorem 4. Let {D,} be a sequence of continuous linear mappings from M
into N. Suppose that p o D, is in M, for cvery @, and for every o in Ny. Sup-
pose that Iim @, (P) = P(P) ewists (in the norm topology of N) for every pro-
jection P im M. Then:

(a) D can be ewtended to o continuous linear map from M into N. If T
denotes the set of projections in M and if L is a commutative von Neumann
subalgebra of M, let v, = D,|T N L. Then:

(b) the collection {v.} is equicontinous at O with respect to the weak operator
topologies on §NL and N;

(¢) the collection {D,} is uniformly weakly completely additive.
If each ®,is positive, then

(d) D, is positive, normal, and completely additive.
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Proof. Forpart(a),itis clear that @ can be extended to finite linear com-
binations of projections. To show that @ can be extended to all of M it is
sufficient to show that @ can be extended to the set of self-adjoint elements
of M. Since each element in M is of the form A,-+44,, where 4; and A4,
are self-adjoint, by linearity @ can then be extended to M.

From the general theory of Vo NEUMANN algebras, every self-adjoint 4
in, M is the limit in norm of a sequence {F,}, where each F, is a finite linear
combination of projections in M; see, e.g., ([4], corollary 2, p. 4).

We now show that {®,(4)} is a CAUCHY sequence in the BANACH space N
and we will define the resulting limit as @(4).

First we note that by the convergence of @,(P) for every projection P, we
have by Theorem 3 that {®,} is uniformly bounded on norm-bounded sets;
hence there is an M,> 0 such that |@,| <M, for all . Thus

” @n(A) - ¢m(A) ” = ”(@n - @m)(Fp) + (@n - @m)(A - ‘Fﬂ) ”
< ”(®n"_@m)(1ﬂw)” + n(@n”—@m)(A'_Fm) “
< H<@n_qjm)(Fﬂ)n + 2M0“A‘_F7)u .

For &> 0, choose p, such that |4 —F,| < e/4M, for all p>p,. For this p,
choose m, and n, such that [(D,—,)(F, )| <e/2 for all m>m, and n>n.
‘We then have for the given ¢

|a(4) — Bu(A)l< 5 +5=¢

for all m>m, and n>>n,. Thus {D,(4)} is a CAUCHY sequence and the extended
map P is easily seen to be linear. The continuity of @ follows directly from
the fact that the sequence {®,} is uniformly bounded on norm-bounded sets.
Thus (a) is proved.

To prove (b), we first prove that the colleetion {y,} is equicontinuous with
respect to the topologies o(M, M,)|T N L and o(N, N).

b4
A typical basic o(N, N,)-neighborhood of 0 is of the form [ ¢;*(N;) where g,

f=1
isin N, an N, is a neighborhood of 0 in C, the complex numbers. By hypothesis
0; 0@, is in M, for each % and n. Thus for a fixed ¢ the sequence {g; o D,} sat-
isfies the hypothesis of Theorem 2 and by part (¢) of that theorem the sequence
{0: o D} is equicontinuous at 0 for the topology o(M, My)| FNL. Thus for the
given neighborhood N, there is a (N, M,)| FNL neighborhood A; of 0 such that

0:(P.(4,)) CN,;
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for all n. Obtaining such a set A, for each ¢, we obtain from a routine calculat-
ion that
k4

Do) 4) € () Puldi) €

fe=l i

Q—z'_l ()

D

for all ». Thus the collection {y,} is equicontinuous with respect to the topolo-
gies o(M, M,)|FNL and o(N, Ny).

We now recall that the @, are uniformly bounded on norm-bounded sets.
Such a set is § N L and so the maps {y,} map §N L into a norm-bounded
subset of N. From the general theory of VoN NEUMANN algebras, for any Von
NEuMANN algebra S the topology (S, S;) relativized to a norm-bounded sub-
set of §is the same as the weak operator topology relativized to that subset;
see ([4], p. 34). Thus {y,} is equicontinuous at 0 with respect to the weak
operator topology on #N L and N. This proves (b).

For part (c), let {P .} be a downward directed commutative collection of
projections in M with g.lb. {P }=0. Let L be the commutative Von NuU-
MANN subalgebra of M generated by {P,}. We note that P,—0 in the weak
operator topology. Let ¢>0 and « in J6. Consider the weak operator neigh-
borhood {4 |I(A.'B, @)} <e} =V of 0in N. By part (b) there is a weak operator
neighborhood U of 0 in M such that w.(U)CV for all n. Noting that there
is an o, such that P, is in U for all &> e, the conclusion then follows.

Finally for part (d) it is easily seen that @ is positive if each @, is. To show
that @ is normal, let {4} be an increasing family of positive operators in M
with Lub. {4,} = A. We note first that by hypothesis, if ¢ is in N, then
¢ o D, is a normal linear functional and by part (b) of Theorem 2, g o P is normal.
Since each g o @, is positive if g is positive, then g o @ is positive. Then by
the proof of Theorem 2, p. 53 of [4], @ will be continuous on norm-bounded
subsets of M in the weak operator topologies on M and N.

Now the set {4,} U {4} is a norm-bounded subset of M. It is also true
that A, being the Lu.b. {4 }, is in the weak operator closure of {4,} ([4], p. 321).
Thus from the previous paragraph ®(4) is in the weak operator closure of
{D(4,)}, and in addition, @(4) < P(A) for all « since P is positive. Since B(A)
is an upper bound of {D(4,)} and a weak operator limit point of the same col-
lection, then @(4) is the Lu.b. of {&(4,)} ([4], p. 321). Thus &(4) = & (L.u.b.
{4.}) =1lub. {H(4,)}. So & is normal and consequently also completely ad-
ditive. [

We now apply Theorem 4 to the case when {®,} is a collection of expectat-
ion mappings.
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III. - Expectation mappings.

For this section, we assume that ¥ € M and that N contains the identity
map I.

The first part of the following theorem states that if each @, in Theorem 4
is an expectation mapping, then so is @. i

The second part is analogous to (a) of the classical VITALI-HAHN-SAKS
theorem stated in the introduction.

Theorem 5. Suppose the set {(25,1} 18 as in Theorem 4 and in addition
suppose that eack D, is an ewpectation mapping of M on N. Then @ is also an
expectation mapping of M on N.

Let v be a continuous expectation mapping of M on N with the property: when-
ever A is a Hermitian element with w(A) =0, then @,(4) =0 for all n. Then
for every £>0, there is a 6> 0 such that for any Hermitian A in M

lw(d)] < é implies |D.(A)] <e
for all n.

Proof. The fact that @ is adjoint-preserving, positive, and satisfies
&O(I) = I follows from the observation that each @, has these properties.

To show that AP(B)= ®(AB) for every A in N and B in M, it is suffic-
ient to note that

|AB(B) — B(AB)| = |AB(B) — AB,(B) — B,(AB) — B(AB)|

< [4] |D(B) — @u(B)| + |Pu(AB) — P(4B)| - 0.

Thus @ is an expectation mapping from M into N.

The proof of the second assertion in the Theorem is modeled after the proof
of the classical VITALI-HARN-SAKS theorem; see, for example, A. ZAANEN
([7], p. 332, theorem 4). Suppose that the asgertion is false. Then there is
an g, > 0 such that, for every positive integer p, there is a Hermitian element 4,
in M and a positive integer n, such that

[p)l<s  and B (4)]> 5.
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We have that

Q)nD(Ap) - ¢71?[1/)(A:p) - w(Ap) _I" -A:n] .

But y(4,—p(4,)) =0 and 4,—p(4,) is Hermitian since A4, is Hermitian
and  is demnt preserving. Thus by hypothesis (Dn [4,—p(4,)] = 0. Thus
D, (A )= @D, (w(A )). Since the (b S are uniformly bounded i in norm by some
K > 0, we have

80 | ()] = [ D, (v(4,) | <Elp(4,)] ,

for all p. Bub [y(4,)] =0 as p—>co, a contradiction. [
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