MARTHA M. MATTAMAL (*)

Completion of a Lebesgue Integral. (**)

This paper is a continuation of [3]. In [3] we defined the LEBESGUE integral axiomatically as follows:

Definition. A LEBESGUE integral is a real valued functional \int with domain $D(\int)$ of real valued functions on a set X and satisfying the following conditions:

- (1) $D(\int)$ is a real linear lattice and \int a linear functional on $D(\int)$.
- (2) D(f) satisfies the Stone condition; that is if $f \in D(f)$ then $f \cap 1 \in D(f)$.
- (3) If f is a non-negative function in D(f), then $f \ge 0$.
- (4) \int is a countably additive functional on $D(\int)$; that is if $f_n \in D(\int)$ is an increasing sequence convergent at every point of the set X to a finite valued function f and the sequence $\int f_n$ is bounded, then $f \in D(\int)$ and $\int f_n$ converges to $\int f$.

The Lebesgue integral is complete if $D(\int)$ contains every non-negative function g on X to which there corresponds an $f \in D(\int)$ such that $0 \le g(x) \le f(x)$ for all $x \in X$ and $\int f = 0$.

In this paper we extend the given LEBESGUE integral to its completion, which is the smallest complete integral containing it, and then find a representation of the completion by means of the volume generated by the original integral.

^(*) Indirizzo: Department of Mathematics, Howard University, Washington, D.C. 20001, U.S.A..

^(**) This paper is part of the author's doctoral dissertation written under the direction of Professor W. M. Bogdanowicz at the Catholic University of America, Washington, D.C.. — Ricevuto: 6-IX-1971.

§ 1. - Definition of the completion.

We recall that for a given Lebesgue integral \int on $D(\int)$ over X, a set $A \subset X$ is a summable set generated by \int (\int -summable set) if its characteristic function $c_A \in D(\int)$, and A is a null set generated by \int (\int -null set) if $c_A \in D(\int)$ and $\int c_A = 0$. The functional $v(A) = \int c(A)$, where A is a \int -summable set, is an upper complete volume on the ring of summable sets.

Proposition 1. Let \int be a Lebesgue integral and $f \in D(\int)$. If A is a null set generated by \int , then $c_A f \in D(\int)$ and $\int c_A f = 0$.

Proof. It is sufficient to prove the proposition for the case when f is non-negative. By Theorem 2 of [3], for any positive number a the set

$${x \in X : f(x) > a}$$

is in V, where V is the family of summable sets generated by \int . Since A is a member of the ring V the set $A_a \in V$, where

$$A_a = \{x \in X : (c_A f)(x) > a\} = A \cap \{x \in X : f(x) > a\}.$$

For the positive integers n and j, let

$$B_{nj} = \{x \in X \colon \, 2^{-n}j < (c_{_{\!A}}f)(x) \leqslant 2^{-n}(j+1)\} = A_2 - n_j \diagdown A_{2^{-n}(j+1)} \; .$$

Then $B_{ni} \in V$ and since $v(B_{ni}) \leq v(A) = 0$, we get $v(B_{ni}) = 0$.

Consider now the sequence of functions

$$s_n = \sum_j 2^{-n} j c_{B_{nj}} \qquad (j = 1, ..., 4^{-n}).$$

The function s_n is a simple function and if v is the volume generated by \int ,

$$\int s_n \, \mathrm{d}v = \sum_{i=1}^{4^n} 2^{-n_i} \, v(B_{ni}) = 0 \ .$$

This implies that $s_n \in D(\int)$ and $\int s_n = 0$.

Since $s_n(x)$ converges increasingly to $c_A f(x)$ for all $x \in X$, it follows from the countable additivity of the integral that $c_A f \in D(\int)$ and $\int c_A f = 0$. This proves the proposition.

and $\int g = \sum_{n=1}^{\infty} \int g_n$.

Proposition 2. Let \int be a Lebesgue integral and $f \in D(\int)$. If f(x) = 0 \int -almost everywhere, then $\int f = 0$.

Proof. The proof follows from Proposition 1; indeed $f = c_A f$, where A is the f-null set outside of which f(x) = 0.

We shall now define the completion. Let \int be a Lebesgue integral with domain $D(\int)$ over a set X. Denote by $D(\int_c)$ the set of real valued functions on X such that for every $f \in D(\int_c)$ there exists a $g \in D(\int)$ with f(x) = g(x) \int -a.e., that is f(x) = g(x) for $x \notin A$, where A is a \int -null set, and define the functional \int_c by $\int_c f = \int g$.

The fact that \int_c is a well defined functional on $D(\int_c)$ follows from Proposition 2; for if f(x) = g(x) \int -a.e. and f(x) = h(x) \int -a.e., then g(x) - h(x) = 0 \int -a.e. and therefore $\int g = \int h$. The functional \int_c will be called the completion of the integral \int . We shall prove that \int_c is a complete integral.

Since the family of null sets generated by the integral \int is closed with respect to countable unions, it is easy to see that $D(\int_c)$ is a linear lattice satisfying the Stone condition and \int_c a linear functional on it. The following proposition shows that \int_c is a positive functional.

Propostion 3. Let $f \in D(\int_c)$ be such that $f(x) \ge 0$ for all $x \in X$. Then $\int_c f$ is non-negative.

Proof. Let $g \in D(\int)$ be such that f(x) = g(x) for $x \notin A$, where A is a f-null set. Then

$$g = c_{x \setminus A} g + c_A g.$$

By Proposition 1, $c_{A}g \in D(\mathfrak{f})$ and $\mathfrak{f}c_{A}g = 0$. Therefore $c_{x \setminus A} \in D(\mathfrak{f})$ and $\mathfrak{f}g = \mathfrak{f}c_{x \setminus A}g \geqslant 0$.

We shall now proceed to establish the countable additivity of the functional $\int_{\mathfrak{o}}$.

For the given integral \int , the family of summable sets, the family of null sets and the volume generated by the integral will be denoted respectively by V, V_0 and v in the remainder of this section.

Lemma 1. Let \int a Lebesgue integral over the space X. Let g_n be a sequence of non-negative functions in $D(\int)$ such that $\int g_n < 4^{-n}$ for all n. Then there exist a set $A \in V_0$ and a function $g \in D(\int)$ such that

$$g(x) = \sum_{n=1}^{\infty} g_n(x)$$
 for all $x \in X \setminus A$

Proof. Consider the sequence of sets

$$A_n = \{x \in X : g_n(x) > 2^{-n}\}.$$

By Theorem 2 of [3] the set $A_n \in V$. Since $g_n \geqslant 2^{-n} e_{A_n}$, we have

$$2^{-n} v(A_n) \leqslant \int g_n < 4^{-n}$$

which gives $v(A_n) < 2^{-n}$. Now

$$\sum\limits_{j=n+1}^{m}v(A_{j})<2^{-n}$$
 for all $m>n$

and therefore, by the upper completeness of v, the set

$$B_n = \bigcup_{n+1}^{\infty} A_j \in V$$
 and $v(B_n) < 2^{-n}$.

From the upper completeness of v on the ring V, we also get that the set $A = \bigcap_{n=1}^{\infty} B_n \in V$ and $v(A) \leqslant v(B_n) < 2^{-n}$ for all n. This implies that v(A) = 0, that is $A \in V_0$.

For any $x \notin A$ there exists a positive integer n such that $0 \leqslant g_i(x) \leqslant 2^{-j}$

for all j>n and therefore the series $\sum\limits_{j=1}^{\infty}g_{j}(x)$ is convergent. Now define a function g by the formula $g(x)=\sum\limits_{j=1}^{\infty}g_{j}(x)$ if $x\notin A$ and g(x)=0 if $x\in A$. Consider $h_{j}=(1-c_{A})g_{j}$. By Proposition 1, $h_{j}\in D(\int)$ and $\int h_{j}=\int g_{j}$.

Moreover, $g(x) = \sum_{j=1}^{\infty} h_j(x)$ for all $x \in X$.

The functions $s_n = \sum_{j=1}^{n} h_j \in D(\int)$ converge increasingly to g and $\int s_n \leqslant \sum_{j=1}^{\infty} h_j = \sum_{j=1}^{n} h_j = \sum_{j=1}^{n}$ $\sum_{j=1}^{\infty} \int g_j < 1$. This implies by the countable additivity of the integral that $g \in D(\int)$ and

$$\int g = \sum_{j=1}^{\infty} \int h_j = \sum_{j=1}^{\infty} \int g_j.$$

The lemma is therefore proved.

Lemma 2. Let \int be a Lebesgue integral over X. If $f_n \in D(\int)$ is a sequence of functions monotone with respect to the relation less or equal \(\int \)-almost everywhere, such that the sequence f_n is bounded, then there exists a function $f \in D(\int)$ such that $f_n(x)$ converges to f(x) \int -almost everywhere and $\int f_n$ converges to f.

Proof. We may assume that the functions are increasing \int -a.e.. Then there exist sets $A_n \in V_0$ such that $f_n(x) \leqslant f_{n+1}(x)$, if $x \notin A_n$.

If we let $B = \bigcup_{n=1}^{\infty} A_n$, then $B \in V_0$ and by Proposition 1 the function $h_n = (1 - c_B) f_n \in D(\int)$ and $\int h_n = \int f_n$. Moreover, $h_n(x) \leqslant h_{n+1}(x)$ for all $x \in X$ and all n.

The sequence $\int h_n$ being increasing and bounded is a Cauchy sequence and therefore for every n there exists k_n such that

$$\int h_{k_{n+1}} - \int h_{k_n} < 4^{-n}$$
.

By Lemma 1, there exist a set $C \in V_0$ and a function $h \in D(f)$ such that

$$\sum_{i=1}^{\infty} (h_{k_{j+1}} - h_{k_j}) = h(x) \qquad \text{if } x \notin C$$

and

$$\sum_{j=1}^{\infty} \left(\int h_{k_{j+1}} - \int h_{k_j} \right) = \int h.$$

Let $f = h_{k_1} + h$. Then $\int h_{k_n}$ converges to $\int f$ and $h_{k_n}(x)$ converges to f(x) for $x \notin C$. Since $\int f_{k_n} = \int h_{k_n}$ is an increasing sequence we see that $\int f_n$ converges to $\int f$, and since $h_n(x)$ is increasing at all $x \in X$ we see that $f_n(x)$ converges to f(x) for any x not in the \int -null set $B \cup C$.

Proposition 4. Let \int be a Lebesgue integral and \int_c its completion. Let $f_n \in D(\int_c)$ be a sequence of functions converging increasingly at every point of the space X to a finite valued function f, and let the sequence $\int_c f_n$ be bounded. Then $f \in D(\int_c)$ and $\int_c f_n$ converges to $\int_c f$.

Proof. There exist functions $g_n \in D(\int)$ and sets $A_n \in V_0$ such that $f_n(x) = g_n(x)$ for $x \notin A_n$ and $\int_{\mathfrak{o}} f_n = \int g_n$. Therefore, by Lemma 2, there exists $g \in D(\int)$ such that $g_n(x)$ converges to g(x) for $x \notin B \in V_0$ and $\int g_n$ converges to $\int g$.

The set $A = \bigcup_{n+1}^{\infty} A_n \in V_0$ and $f_n(x)$ converges to g(x) for $x \notin A \cup B$. This implies that f(x) = g(x) for $x \notin A \cup B \in V_0$. Therefore $f \in D(\int_c)$ and $\int_c f = \int_c g$.

Lemma 3. Let \int be a Lebesgue integral and $f \in D(\int)$ such that $\int |f| = 0$. Then f(x) = 0 \int -a.e.. Proof. Let $A = \{x \in X : f(x) \neq 0\}$. Then $A = \bigcup_{n=1}^{\infty} A_n$, where

$$A_n = \{x \in X : |f(x)| > 1/n\}.$$

By Theorem 2 of [3], $c_{A_n} \in D(\int)$. Also, since $c_{A_n} < n |f|$ we get $v(A_n) = \int c_{A_n} < n \int |f| = 0$. This implies that $A_n \in V_0$ and since V_0 is closed under countable unions, $A \in V_0$. This proves the lemma.

Proposition 5. Let g be a non-negative function on X such that there exists an $f \in D(\lceil_c \rceil)$ with $g(x) \leq f(x)$ for all $x \in X$ and $\lceil_c f = 0$. Then $g \in D(\lceil_c \rceil)$.

Proof. Let $h \in D(\int)$ such that f(x) = h(x) for $x \notin A$, where $A \in V_0$, and $\int_{\mathfrak{c}} f = \int h$. Then $h = |h| + (h - h)c_A$ and therefore, by Proposition 1, $\int |h| = \int h = 0$. Lemma 3 implies that h(x) = 0 if $x \notin B$, where $B \in V_0$.

Now, $g(x) \leq h(x) = 0$ if $x \notin A \cup B$. Since $A \cup B \in V_0$, we see that g(x) = 0 f-a.e.. The conclusion now follows from the fact that $0 \in D(f)$.

Theorem 1. Let \int be a Lebesgue integral on $D(\int)$ and \int_c its completion on $D(\int_c)$. Then \int_c is the smallest complete Lebesgue integral extending \int . In particular, if \int is a complete Lebesgue integral, then its completion coincides with it.

Proof. The fact that the completion is a complete LEBESGUE integral follows from the preceding propositions and discussions.

Since $0 \in D(\int)$, the empty set belongs to V_0 and therefore $D(\int) \subset D(\int_c)$ and $\int f = \int_c f$ for $f \in D(\int)$, that is \int_c is an extension of \int .

Suppose, now that J is a complete LEBESGUE integral such that $D(\int) \subset D(J)$ and $\int f = Jf$ for $f \in D(\int)$. We shall show that $D(\int_c) \subset D(J)$ and $\int_c f = Jf$ for $f \in D(\int_c)$.

Let $f \in D(\int_c)$. Then there exists $g \in D(\int)$ such that f(x) = g(x) for $x \notin A$, where A is a \int -null set, and $\int_c f = \int g$. Since $e_A \in D(\int) \subset D(\int)$, $Je_A = \int e_A = 0$ and therefore A is a J-null set. By Theorem 3 of [3], $f - g \in D(J)$ and J(f - g) = 0 which implies that $f \in D(J)$ and $Jf = Jg = \int_c f$.

§ 2. - Representation of the completion by means of volume.

Let (X, V, v) be a volume space and S(V, R) the family of real valued simple functions over V. (See [1].) Let $S_1(V, R)$ denote the set of all functions f for which there exists a sequence $f_n \in S(V, R)$ such that $f_n(x)$ con-

verges to f(x) for all $x \in X$. The set $S_2(V, R)$ will consist of limits of sequences from the set $S_1(V, R)$ and $S_3(V, R)$ will consist of limits of sequences from $S_2(V, R)$. Denote by L(v, R) the space of real valued Lebesgue summable functions generated by volume v and by M(v, R) the space of real valued measurable functions generated by v. (See [2].)

For a measure μ , denote by $M(\mu, R)$ the space of real valued measurable functions generated by μ .

Lemma 4. Let (X, V, v) be a volume space and $f \in L(v, R)$. Let μ be a measure with domain M extending v, that is $V \subset M$ and $\mu(A) = v(A)$ for $A \in V$. Then for any $f \in L(v, R)$ there exists a function $g \in M(\mu, R)$ such that f(x) = g(x) v-a.e.

Proof. By Theorem 2 of [2], $L(v,R) \subset M(v,R)$ and, by Theorem 7 of the same paper, there exists a function $g \in S_3(V,R)$ such that f(x) = g(x) v-a.e.. Since $M(\mu,R)$ is closed under convergence everywhere, $g \in M(\mu,R)$.

Lemma 5. Let \int be a Lebesgue integral and $\int_{\mathfrak{o}}$ its completion. Then a condition C(x) holds \int -a.e. if and only if C(x) holds \int -a.e..

Proof. If C(x) holds \int -a.e., then obviously C(x) holds \int_{e} -a.e.. Now, assume that C(x) is true for all $x \notin A \subset X$, where A is a \int_{e} -null set. We shall show that there exists a set $B \subset X$ such that A is a \int -null set and $A \subset B$.

Since $c_A \in D(\int_c)$, there exists a function $g \in D(\int)$ such that $c_A(x) = g(x)$ for $x \notin E$, where E is a \int -null set. This implies that $g(x) \geqslant 0$ for $x \notin E$ and, by Proposition 1, $\int |g| = \int g = 0$. Lemma 3 implies that g(x) = 0 for $x \notin F$, where F is a \int -null set. Let $B = E \cup F$. Then B is a \int -null set and we see that $c_A(x) = 0$ for $x \notin B$, that is $A \subset B$.

Theorem 2. Let \int be a Lebesgue integral with domain $D(\int)$ and \int_c its completion with domain $D(\int_c)$. Let v be the volume generated by \int on the ring of summable sets. Then $D(\int_c) = L(v, R)$ and $\int_c f = \int f \, dv$ for $f \in D(\int_c)$.

Proof. It was established in [3] that

$$D(\int) = L(v, R) \cap M(\mu, R)$$

and $\int f = \int f dv$ for $f \in D(\int)$, where μ is the measure with smallest domain extending v.

Now, let $f \in D(\int_{\sigma})$. Then there exists a function $g \in D(\int) \subset L(v, R)$ and a \int -null set A such that f(x) = g(x) if $x \notin A$ and $\int_{\sigma} f = \int g$. Since v(A) = 0,

A is a v-null set and therefore f(x) = g(x) v-a.e. Since $g \in L(v, R)$, we get from Theorem 1, part. 4 of [1] that $f \in L(v, R)$ and $\int f dv = \int g dv = \int g = \int_c f$.

Now to prove that $L(v, R) \subset D(\int_{s})$, take any $f \in L(v, R)$. By Lemma 4, there exists a function $g \in M(\mu, R)$ such that f(x) = g(x) v-a.e. Again, by Theorem 1, part 4, of [1], $g \in L(v, R)$ and therefore $g \in D(\int)$. By Lemma 2 of [3], $f(x) = g(x) \int_{s}$ -a.e. which implies by Lemma 5 that $f \in D(\int_{s})$.

References.

- [1] W.M. Bogdanowicz, A generalization of the Lebesgue-Bochner-Stieltjes integral and a new approach to the theory of integration, Proc. Nat. Acad. Sci. U.S. 53 (1965), 492-498.
- [2] W. M. BOGDANOWICZ, An approach to the theory of Lebesgue-Bochner measurable functions and to the theory of measure, Math. Ann. 164 (1966), 251-269.
- [3] M. M. Mattamal, Axiomatic characterization of the Lebesgue integral, Riv. Mat. Univ. Parma (2) 12 (1971), 29-40.

* * *