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MARTHA M. MATTAMAL (¥)

Completion of a Lebesgue Integral. (*%)

This paper is a continuation of [3]. In [3] we defined the LEBESGUE integral
axiomatically as follows:

Definition. A LEBESGUE integral is a real valued functional [ with
domain D([) of real valued functions on a set X and satisfying the following
conditions:

(1) D([) is a real linear lattice and [ a linear functional on D(f).
(2) D([) satisfies the SToNE condition; that is if fe D([) then fN1eD(]).
(3) If f is a non-negative function in D({), then [f>0.

(4) [ is a countably additive functional on D([); that is if f,eD(])
is an increasing sequence convergent at every point of the set X to a finite
valued function f and the sequence [f, is bounded, then feD(f) and ff,
converges to [f.

The LEBESGUE integral is complete if D([) contains every non-negative
function g on X to which there corresponds an f € D(f) such that 0 <g(w)<f(x)
for all ze X and [f=0.

In this paper we extend the given LEBESGUE integral to its completion,
which is the smallest complete integral containing it, and then find a repre-
sentation of the completion by means of the volume generated by the original
integral.

(*) Indirizzo: Department of Mathematics, Howard TUniversity, Washington,
D.C. 20001, U.S.A..

(**) This paper is part of the author’s doctoral dissertation written under the
direction of Professor W. M. BoepaNowicz at the Catholic University of America,
Washington, D.C. . — Ricevuto: 6-1X-1971.
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§ 1. - Definition of the completion.
We recall that for a given LEBESGUE integral [ on D(f) over X, a seb
A cX is a summable set generated by [ ([-summable set) if its characteristic
function ¢, D([), and 4 is a null set generated by [ (f-null set) if ¢, e D([)

and fe, = 0. The functional v(4) =[¢(4), where 4 is a [-summable set, is
an upper complete volume on the ring of summable sets.

Proposition 1. Let [ be a Lebesgue integral and feD(f). If A
ts a null set generated by [, then c,fe D(f) and [e,f=0.

Proof. It is sufficient to prove the proposition for the case when f is
non-negative. By Theorem 2 of [3], for any positive number a the set

{we X: f(@) > a}

is in V, where V is the family of summable sets generated by [. Since 4 is
a member of the ring V the set 4,eV, where

A, ={zeX: (¢,f)w)>a} =AN{reX: flx) > a} .
For the positive integers # and j, let
By ={weX: 27 < (¢,N@) <27 + 1)} = Ao — 1, \Ayn s, -
Then B,,;eV and since #(B,;) <v(4) =0, we get v(B,;) = 0.
Consider now the sequence of functions
- jzzwjeﬂm (=1, ..,4").

The function s, is a simple function and if v is the volume generated by B

47!
[$pdv =3 27 9(B,;) = 0.

j=1

This implies that s,eD(f) and [s,=0.
Since s,(x) converges increasingly to ¢, f(z) for all ze X, it follows from

the countable additivity of the integral that c¢,feD(f) and [e,f=0. This
proves the proposition.
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Proposition 2. ILet [ be a Lebesgue integral and feD(f). If flz)=0
[-almost everywhere, then [f=0.

Proof. The proof follows from Proposition 1; indeed f=g¢,f, where 4
is the [-null set outside of which f(x)=0.

‘We shall now define the completion. Let [ be a LEBESGUE integral with
domain D([) over a set X. Denote by D({,) the set of real valued functions
on X such that for every feD([,) there exists a geD(f) with f(z)= g(»)
f{-a.e., that is f(@) = g(») for x¢ A, where 4 is a [-null set, and define the
functional [, by [, f=/g.

The fact that [, is a well defined functionalon D([,) follows from Propo-
sition, 2; for if f(») = g(») [-a.e. and f(#)=h(x) [-a.e., then g(x)—h(x)=0
f{-a.e. and therefore [g=[h. The functional [, will be called the completion
of the integral [. We shall prove that [, is a complete integral.

Since the family of null sets generated by the integral [ is closed with
respect to countable unions, it is easy to see that D(f,) is a linear lattice
satisfying the SToNE condition and [, a linear functional on it. The following
proposition shows that [, is a positive functional.

Propostion 3. Let feD(f,) be such that f(x)>0 for all x€X. Then
{.f is mon-negative.

Proof. Let geD([) be such that f(x) = g(x) for #¢ 4, where A is a
[-null set. Then
g=0x 9 + 9.

By Proposition 1, c¢,geD(f) and fe,g=0. Therefore ¢, ,€D(J) and
.[g =IO‘Y\A g>0.

‘We shall now proceed to establish the countable additivity of the fune-
tional f,.

For the given integral [, the family of summable sets, the family of null
sets and the volume generated by the integral will be denoted respectively
by V, V, and » in the remainder of this section.

Lemma 1. Let [ a Lebesgue integral over the space X. Let g, be a
sequence of non-negative functions in D([) such that [g, <4 for all n. Then
there ewist a set AV, and a function geD([) such that

g(w) = f 9.(2) for all z € X\ A

n=1

and fgzifg,,.

n=1
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Proof. Consider the sequence of sets
={weX: g.(o)>2"}.

By Theorem 2 of [3] the set 4,€V. Since g,>2""¢ 4 e have

9—n ‘U Ign 4=
which gives v{4,) < 2.
Now
> o(d;) <2 for all m>n
F=ntl

and therefore, by the upper completeness of », the set

B,=U4,eV and v(B,) < 27",

n+l

From the upper completeness of v on the ring V, we also get that the set

A=NB,eV and v(4d)<v(B,)<2™ for all ». This implies that v(4) =0,
n=1

that is Ae¥V,.
For any z¢ A there exists a positive integer n such that 0<g,(x)<2-

-3

for all j>n and therefore the series Y g;(z) is eonvergent
j..ﬂ

Now define a function g by the formula g(z)= 2 9;(@) if ¢ A and g(z)= 0
if weA. Consider h; = (1—c¢,)g;,. By Ploposmlon 1 h;eD(f) and [h; = [g;.
Moreover, g(x Zhj(w for all ze X.

i=1
The functions s, = EhJeD f) converge increasingly to g and fsn <

gg<1 This 1mphes by the countable additivity of the integral that
g‘l
Fasl

geD([) and
fg=2 [hi=2 [9;.
i=1 j=1
The lemma is therefore proved.

Lemma 2. Let [ be a Lebesguc integral over X. If f.eD(f) is a
sequence of functions monotone with respect to the relation less or equal [-almost
everywhere, such that the sequemce [f, is bounded, then there emisis a function
feD([) such that f,(x) converges to f(z) [-almost everywhere and [f. converges

to (f.
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Proof. We may assume that the functions are increasing [-a.e.. Then
there exist sets 4,€V, such that f.(#)<f.u(®), if 2¢A4,.

It we let B= |J4,, then BeV, and by Proposition 1 the function

n=1
hw = (1—¢,)fn€D(f) and [k, =[f,. Moreover, h,(®)<l,u(v) for all veX
and all =n.
The sequence [h, being increasing and bounded is a CAUCHY sequence
and therefore for every n there exists k, such that

| by, i Jh < 47

By Lemma 1, there exist a set CeV, and a function ke D([) such that
> (s, —Ta)) = h(®) if ¢ C

j=1

and

[ \%L

(g, — Jha)) = [

.
]
ot

Let f=h; +h. Then jhkw converges to [f and Iy, (@) converges to }(x)
for ¢ C. Since | f’%,: fh’% is an increasing sequence we see that [f, con-

verges to [f, and sinee h,(#) is increasing at all x € X we see that f,(x) con-
verges to f(z) for any « not in the [-null set BU C.

Proposition 4. Let [ be a Lebesgue integral and [, its completion.
Let f,eD(f,) be a sequence of functions converging imereasingly at every point
of the space X to a finite valued function f, and let the sequence [, f, be bounded.
Then feD([,) and [, f. converges to [, f.

Proof. There exist functions g,€D(f) and sets 4,€V, such that f.(x)=
= g.(2) for x¢ A, and [, f.=[¢g.. Therefore, by Lemma 2, there exists
geD(f) such that g.(») converges to g(x) for ¢ BeV, and fg. converges
to [g.

The set A= JA,eV, and f.(@) converges to g(z) for ¢ AU B. This
nt+l

implies that f(#) = g(w) for #¢ A U BeV,. Therefore feD(f,) and |, f=]g.

Lemma 3. Let | be a Lebesgue integral and feD([) such that [|f|=0.
Then f(x) =0 [-a.e..
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Proof. Let A={xeX: f()0}. Then A = [J4,, where

A, ={zeX: |f@)|>1/n}.

By Theorem 2 of (3], cAneD(f). Also, since ¢, <n|f| we get o(4,)=
=[e, <nf|f|=0. This implies that 4,eV, and since V, is closed under
countable unions, AeV,. This proves the lemma.

Proposition 5. Let g be a non-negative function on X such that there
ewists an feD(f,) with g@)<f@) for all e X and [,f=0. Then ge D ([,).

Proof. Let heD(f) such that f(w) = h(x) for ¢ A, where AeV,,
and [,f=1{fh. Then h=|h|4 (h—h)c, and therefore, by Proposition 1, [|h]|=
=(h=0. Lemma 3 implies that h(z)=0 if ¢ B, where Be,.

Now, g@)<h(z)=0 if ¢ AU B. Since AU BeV,, we see that g(x) =0
J-a.e. . The conclusion now follows from the fact that 0eD(f).

Theorem 1. Let [ be a Lebesgue integral on D(f) and [, its completion
on D([f,). Then [, is the smallest complete Lebesgue integral extending {. In
particular, if | is a complete Lebesgue integral, them ils completion coin-
cides with it.

Proof. The fact that the completion is a complete LEBESGUE integral
follows from the preceding propositions and discussions.

Since 0 e D([), the empty set belongs to V, and therefore D(f)c D(J,)
and [f=/[,f for feD({), that is [, is an extension of .

Suppose, now that J is a complete LEBESGUE integral such that D(f)c
cD(J) and [f=Jffor fe D([). We shall show that D([,) c D(J) and [, f=Jf
for feD([,).

Let feD(f,). Then there exists g€ D([) such that f(»)= g(z) for »¢ A,
where 4 is a [-null set, and [,f=[g. Since ¢, € D(f) c D({), Je,=[e,= 0 and
therefore A is a J-null set. By Theorem 3 of [3], f—geD(J) and J(f—g)=0
which implies that fe D{J) and Jf=dJg=[,f.

§ 2. - Representation of the completion by means of volume.

Let (X, V,») be a volume space and S(V, R) the family of real valued
simple functions over V. (See [1].) Let S,(V,R) denote the set of all func-
tions f for which there exists a sequence f,e S(V, R) such that f,(z) con-
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verges to f(z) for all z € X. The set S,(V, R) will consist of limits of sequences
from the set 8,(V, R) and S,(V, B) will consist of limits of sequences from
8,(V, R). Denote by L(v, B) the space of real valued LEBESGUE summable
functions generated by volume » and by M (v, R) the space of real valued
measurable functions generated by ». (See [2].)

For a measure pu, denote by M(u, B) the space of real valued measurable
functions generated by .

Lemma 4. Let (X, V,v) be a volume space and fe L(v, R). Let p be a
measure with domain M extending v, that is Vc M and u(d)=v(4) for AeV.
Then for any fe L{v, R) there ewists o function g€ M{u, R) such that f(z)=
= g(x) v-a.c. .

Proof. By Theorem 2 of [2], L(v, R)c M(», R) and, by Theorem 7 of
the same paper, there exists a funetion ge 8;(V, B) such that f(z) = g(x)
v-a.e.. Since M(u, R) is closed under convergence everywhere, ge& M(u, R).

Lemma 5. Let [ be a Lebesgue integral and [, its completion. Then a
condition C(w) holds [-a.e. if and only if C(z) holds [, -a.e. .

Proof. If C(z) holds [-a.e., then obviously O(z) holds [.,-a.e.. Now,
assume that C(») is true for all # ¢ A c X, where 4 is a [-null set. We shall
show that there exists a set Bc X such that 4 is a [-null set and 4 c B.

Since ¢, €.D(f,), there exists a function ge D([) such that c,(»)= g(»)
for #¢ B, where F is a [-null set. This implies that g(z)>0 for ¢ F and,
by Proposition 1, |g]=fg=0. Lemma 3 implies that g(z)=0 for x ¢ F, where
Fis a [-null set. Let B=HEUF. Then B is a [-null set and we see that
¢, (@) =0 for x¢ B, that is AcB.

Theorem 2. Let [ be a Lebesgue integral with domain D(f) and |, its
completion with domain D([,). Let v be the volume generated by | on the ring of
summable sets. Then D({,) = L(v, R) and [,f=[fdv for feD(],).

Proof. It was established in [3] that
D(f) = L{v, B) N M(u, R)

and [f=[fdv for feD(f), where p is the measure with smallest domain
extending .

Now, let fe.D(f,). Then there exists a function geD([)c L(v, R) and
a {-null set 4 such that f(z)=g(x) ife¢ A and [ ,f=[g. Since v(4d) =0,
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A is a v-null set and therefore f(x)= g(zx) v-a.e.. Since ge L{v, R), we get
from Theorem 1, part. 4 of [1] that feL(v, B) and [fdv=[gdv= fg=/, f.

Now to prove that L(v, R) c D(f,), take any fe L(v, R). By Lemma 4,
there exists a function ge M(u, B) such that f{z) =g(x) v-a.e.. Again, by
Theorem 1, part 4, of [1], g€ L(v, B) and therefore g e D([). By Lemma 2
of [3], f(») = g(#) [.,-a.e. which implies by Lemma 5 that feD(],).
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