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On Contraction Mappings. (**)

Introduction. - The contraction mapping principle of BANACH remains the
most fruitful for proving the existence theorem in analysis. For this purpose
extensions of the theorem are of continuing interest. In the present paper gene-
ralization of a few results of RaxorcH [6] and JANos [2] have been given. In
Section 8, the notion of D-contraction (i.e. a mapping T': X — X of a metric space
X into itself satisfying the condition d(T,, T,)<ad(z, T.) + B d{y, T,) for all z,
y € X and 0 <a+f<1) has been introduced. A theorem about D-contraction is also
proven in the same section which generalizes the result of KANNAN [3]. Finally,
a theorem on sequence of contraction mapping has been added which generalizes
all the results on the sequence of contraction mappings which were based on
BanacH Contraction Principle.

1. — Let X be a metric space and f a mapping of X into itself; f will be said
to be globally contractive mapping if the condition

a(f(p), @) < A dlp, q)

with constant 4, 0<A<1, holds for every p,ge X, p = ¢. A well known theo-
rem of BaNAacH states:

(*) Indirizzi degli AA.: K. L. SixeH, Department of Mathematics, Memorial Uni-
versity of Newfoundland, St. John’s, Newfoundland, Canada; S. DEB, Department of
Mathematics, University of South Carolina, Columbia, South Carolina 29208, U.S.A.;
B. GARDNER, Department of Mathematics, Memorial University of Newfoundland, St.
Juhn’s, Newfoundland, Canada.

(**) Ricevuto: 26-V-1970.
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If X is a complete metric space and f is a globally contractive mapping
of X into itself, then there exists a unique fixed point & such that f(£) = &.

1.4. — Definition. A mapping f of a metric space X into itself is said
to be contractive if, for every two distinet points p and ¢ in X,

Ad(f(p), 1@)) < &(p, @), for all p,ge X, p#~q.

A contractive mapping is clearly continuous, and if such a mapping has
a fixed point, then this fixed point is unique.

1.2. -~ Definition. Denote by F the family of functions A(z, y) satis-
fying the following conditions:
1) A= y) = A(d(=, y)), Le. 2 depends on the distance between z and
y only.
(2) 0<A(d) < 1 for every d > 0.
(3) A(d) is a monotonically decreasing function of d.
(4) Sup Az, y) == 1.

1.8. — Definition. A metric space X will be said to be e-chainable if
for every a, b € X there exists an ¢-chain, that is a finite set of points ¢ = x,,
Dyy ey B =00 (n may depend on both « and b) such that

A@1, ;) < & (t=1,2,..,n.

Remark. Every connected metric space is well-linked but the converse
is not true. For example, the set {(n, tan 2)|0<z<n/2} U {(#/2,¥)|y>0} is
well-linked complete metric space but not connected. However, if X is compact,
the converse is true. Further discussions about well-linked metric space may
be found in CHoQNET [3], MATHEWS [11] and BERGE [1].

14 — Theorem. If T is a contractive mapping of a complete e-chainable
metric space X imto idtself satisfying 0 < d(w,y) <e = AT(@), T(y)) <Az, y)-
“d(z,y) Ve,ye X and (z,y) € F. Then T has a unique fized point.

Proof. Since (X, d) is e-chainable we define, for every =, ¥y, € X,

d(x, y) = inf z A1, ;)

i=1

where the « infimum » is taken over g-chains @, #4, ..., , joining s=x, and y=2x,.
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Then d is a distance function on X satisfying
(1) dlw, y)<d.(@, ),
(i) d(@,y) =d(,y) for dz,y)<e.
From (ii) is follows that a sequence {Wn} X is a CAUCHY sequence with respect
to 4, if and only if it is & CAvcHY sequence with respect to d and is convergent
with respect to d, if and only if it is convergent with respect to d. Since (X, d)
is complete, therefore (X, d,) is also a complete metric space.
Moreover 7' is a contractive mapping with respect to d,. Given w,ye X
and any e-chain xy, @y, ..., ¢, with x, =2, 2, =y we have
ATy To) <A@im1y @) A1, ;) =
= Z‘(d(wi—17 ;) U@y, %) < Me)e (i=1,2,..,n).
Thus, since Ale) < 1,
a(Ts, ,, T”f) <e (1=1,2,..,m).
Hence T, , Ty, .- Tm,, is an g-chain joining 7, and T, and

n

A (T'ay T4) < 2 UTy_yy To) <3, M1, #)) A1, @) -

=1 i=1
Sinee w, %1, ..., #, 18 an arbitrary e¢-chain, we have
AT, T') < Mdy(@, 9)) del, y) -
Therefore, by the corollary to theorem 2 of RaxoTcH [6], 7 has a unique
fixed point.
2.1. — Definition. Let X = 4,, T'(X) = 4,, ..., T(X) = A, and intro-
duce the functions n(z) and n{z, y) as follows
n(z) = max {n; v e 4,}, n(@, y) = min {n(z), n(y)} .

2.2. — Theorem. For Az, y) € F there ewists a distance funciion d* such
that @*(T(x), T(y)) < Adlz, ), &*(, 9)).

10
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Proof. By theorem 1 of Janos [2] there exists a metric d(z,y) with
respect to which the mapping 7' is non-expansive. Let

(@, y) = {Z(d(m, ?/))Mx’ ”, d(z, y)} y
A, = T"(X), Iy (X) = T(T"(X)) .

Hence z € 4,,
T(-X) = A71+1'

Let ¢ = (max. subscript for X). Then 7 -+ 1 = (max. subscript for 7'(X)).
Let j = (max. subseript for ¥). Then j 4+ 1 = (max. subseript for 7(Y)).
Thus #(7(z), T(y)) = min (i + 1, § + 1) = min (G, j + 1) = n(@, y) + 1,

o T(@), T(y)) <A [d(@, y]"" " AT, T,) .
Now 7' is non-expansive, thus d(7'(=), T(y)) < d(w, y). Hence
(T(@), T(y)) < [Md(m, )] 2 d(a, y) < Mdlw, ) e, y) -

The funection «(z, y) is not in general a metric. However, a derived metric
d*(z, y) can be defined as

(@, y) = inf 3 o(a,, o),

i=1

where the «infimum » is taken over all possible systems of elements »y, #,,
wry Zn€ X such that z =, and z,, = y.
From the definition of d¥(w,y) it is clear that d*(x,y)<d(z,y). The
same method as used by JANo0s in [2] shows that d*(z, y) is a metric.
Now we have only to prove that

F(T(=), T(y)) < Md(z, y), d*(@, ) -

Let ¢ > 0 be given. From the definition of d*(x, y), there exists a represen-
tative of d*(zx,y) in the form

& (@, y) = inf 3 d(@;, @) -

i=1
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(5]

Thus

‘Z*<T( )s fl/)) inf z “(T(w h T z+l)) <inf i Z(d(miy mi+1)) ot(@; y Byty)
=1 i=1

i
n

A inf z Al®@; y %;44) ind Z (@ Bity) = 2 ( (=, ?/)) d*(z, y)

f=1

Fe=1

Corollary. When « is constant with 0<a<1 we get the result of JANOS [2]

3.1. — Definition. A mapping 7: X — X of a metric space X into itself
is said to be D-contraction if it satisfies the following condition

for all 2,yeX and a+f<1.

ATy, Ty<edlw, T,)+ pdly, T,)
3.2. — Theorem. HEvery D-contraction of a complete metric space X into
iself has a unique fized point.

Let @ be an arbitrary point in X. Set a, = T,, Xa,= T,. So

Proof.
a, = T, = T:, and in general
Ta, ,=T,.
Claim. It can be shown that the sequence is CAUCHY. In fact we have
Unt1y @n) = AT, To_ )< d(Ty, Toth) 4 B A(T2, T7)
or
(1 —«) @I3™, Th) < f ATy, T3
or
AdTe+r, To) < li a(Tn=1, T .
-
Now

ATy, To™Y) < ad(T7, Th) + B (1o, T°7%)
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or

(1 — ) d(Tq, T3 < B AT, 1279,
ie.

acrs, T < L agr, ey

Hence

aTr+r, Iy < (&)nd(_’[’g—l, Ts-%),

Continuing this process:

s, 7 <

a>n d(Ta, a).

(61

Hence if n, m are integers satisfying =, m>d, then by triangle inequality, in

general,

d(a/n, C’/n+p)<d(a'n’ an+1) + d(a’n+17 an+2) + + d(a’n-i‘p*l; a’n+p)

< 4 et e L et ) d(a, Ta)
where
r=pl1—c.
Since 0 < a4 <1, 0<r <1, therefore
d(otyy ctyiy,) =0 a8 #— oo.

Therefore {a,} is a CAUCHY sequence.

Since X is complete, there exists a point ¢, € X which is the limit point of

the sequence a,,i.e. lima, = a,.

n-—> o

Now we show that a, is a fixed point for 7. By triangle inequality, we have

Aoy Tao) < (g, an) + Ay, Tag) <d(ay, a,) + « (g, Tag) + B d(tp—1, Tapy)
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or

(1 — o) dag, Tao) <d(doy tn) + f Aty Wpmy) «

Now for ¢ > 0 is arbitrary, then for sufficiently large n, we have

(l—oa)e (I— a)e
Ao, 0) <575 and Al a) < S
Hence from (1) we have
1— 1—
oy Tagyw —0 90 Qb e\ P

I+A0—a  A—a1+h 1+ 1+8

Corollary. The theorem 2 [3] is « particular case of Theorem 3.2 by
taking o = p.

3.3. — KaNNAN ([3], [10]) has proven few theorems about fixed points by
taking the following mapping 7: X — X of a metric space X into itself satis-
fying the following condition

A(Tw, Ty) <a[d(@, Tz) + Ay, Ty)]

for all ,ye X and 0 < a<< }.

Lemma. Ewery D-contraction satisfies the condition (10).
Proof.

ATz, Ty)<e dw, Tx) + B dy, Ty) ,

ATy, Tz)<o d(y, Ty) +  d(@, Tx)

or
d(Tw, Ty)<e d(y, Ty) + f dlz, Ta),

by symmetric property.
Adding (2) and (3) we have

2 d(Tz, Ty)<(« + p) [d(w, Tz) + dly, Ty)] =y [d(w, Tx) + d(y, Ty)],

where

y=(+p82<}.
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4.1. — Theorem. Suppose:

(i) X is a complete metric space.

(i) T4,..,T, be a sequence of mappings with contraction coefficients o
as in Definition (1) of Section 3 and with fized points @y, @, ..., ,. Let
im T, = T, with fized point .

>
Then lima, = .

n—>wo
Proof. Given that
a(Tnacy Tny)<05(T(n—1)x7 T..)+ “(T(n—l)w T,,)

for all #,ye€ X and for n =1, 2, ....
Taking limit as » — co we get

AT, Tyy<a d(z, Tz) + « d(y, Ty) .
Since T', converges to T, therefore for given ¢ > 0 there exists an N such that
n>N implies d(T,., T.)<e/(1 + &) where « is a contraction constant. Now
for n > N,
d(”? wn) = d(Tw7 Tnmn)<d(Tw7 Tﬂm) + d(Tnx7 Tnmn)<

<AUTwy Tha) + (@, Ths) + ad( Xy, Ty X,) <AU(Tay Toi) + @ ATy Ta) -

Hence d(x,2,) < 1+ 0)d(T,, T,,) as the last factor — 0. Thus, we have
d(z, x,) < & for n>N, so that limz, = =.

n—> 0
Suppose &' is another fixed point of 7, then by above argument, &’ = lim =, .
n—>
Hence 7 has only one fixed point.
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