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W. MIBLANTS (%)

On the Number of Ordering-Structures. (**)

1. - Introduction.

1.1. — The structure of a relation, as understood for instance by RuUs-
SELL [19] and CARNAP [3], is simply the class of all relations to which it is
isomorphic (what WHITEHEAD and RUSSELL at first called the relation-
number |26]).

An important unsolved enumeration problem ([5], [8], [10], [21]) is the deter-
mination of the number of ordering-structures on a finite set. It is well known
(11, 121, 14, [7], [21]) that there exist a bijective covariant functor from the
category of finite orderings with the isotonic functions as morphisms to the
category of finite 7'-topologies with the continuous functions as morphisms.

Hence, many papers concerning this enumeration problem use a topological
terminology. The object of this paper is to find a reasonable lower bound for
the number of ordering-structures on a finite set with cardinality », which
I shall denote by N(n).

1.2. — I shall start with results obtained by D. A. KLARNER [10]. A poset
is called graded if at least one rank function ean be defined on it. A rank fune-
tion is a map from the points of the poset to the chain of integers such that
if # covers y then

flw) =fy) + 1.

The rank of a poset is the greatest length of a chain in it. If we denote the
number of classes of isomorphic graded orderings with rank h on a finite set
with cardinality # by N,(k,n); then D. A. KLARNER obtained the following
result.

(*) Indirizzo: Ringlaan 102, 2610 Wilrijk, Belgio.
(**) Ricevuto: 9-XII-1971.
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Consider an arbitrary decomposition of the number n into exactly h non
negative parts:

h
(V1 Doy oeey W) ;>0 ; Dvi=1mn; v,€Z.

i==1

With each permutation 7% = (@, n,, ..., #,) of the permutation-group:
i=1—>h
S vy, vgs oty = II sym(v,), where sym(v,) denotes the symmetrical group of
®

degree v;, we associate the following number:

k v Yit1
O#) = z 2 z (2, ) 0(75:17 P) G(nﬂ—n q ,
i=1 p=1 @g=1

where (p, q) denotes the greatest common divisor of p and ¢, and ¢(c, j) denotes
the number of cycles of length § of the permutation o.
Consider then the following number

1 _
pa(m) = z - z gem |,
(V... vp) H v ! TE Sy, .. vy

i=1

when the sum extends on all possible compositions (v, ... v,) of n into exactly &
non-negative parts. Consider then the following generating function

Py2) = 3 palm)am .

n=0

Consider also the functions B,(x) = P,(@)]Pr—(2).

If Bu@) = > by(n)a", then N,(h, n) = byi () — by(n).
n=o

We shall use these numbers N, (h, n) obtained by D. A. KLARNER to find
a reasonable lower bound of the number of ordering-stuctures on a finite set.

1.3. — Remark. H. SuArp [21] obtained the following results for N(n)
and Nyn) for n<5. (By N, n) we denote the number of classes of isomorphic
connected orderings):

n 1 2 3 4 5
N, (n) 1 1 3 10 44
N(n) 1 2 5 16 63
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2. - A lower bound of the number of ordering-structures.

21 - Lemma 1. By adding one point to a graded poset with rank h,
h—3

(b > 3), we can construct p(h) = 3 24(2"2—1) classes of isomorphic non-graded
a=0

posets with rank h.

Proof. Consider a graded ordering P, with rank % on a finite set X,
with cardinality #.

There exists at least one chain C. in P_ with length k. The minimal elem-
ent of this chain will be denoted by ¢,; and the element of C_ which covers ¢;,
will be denoted by ¢, (1= 0,1, 2, ..., k). Consider now a new point p and
the following orderings defined on X, U {p}. We let the point p cover the
points (cq, 4y -oe ¢; ) with 0<t, <ty <t <h—3, and we let the points
(C1 €15 vy €1) with 4, + 3 < §,<jy... < e < h cover the point p. In this way
we obtain non-graded posets on % - 1 points with rank k. The poset is non-
graded because if there exist a rank-function f on this new poset (we can always
assume that f(¢,) = 0), then f{p) = 4, + 1 and so f(¢;) = % + 2 and this in
contradiction with the fact that j,> 4, -+ 3.

Consequently there is no rankfunction on this new poset and hence it is
non-graded. The rank is always % because the lenght of an arbitrary chain
passing trough p is less than . Now we prove that the non-graded poset ob-
tained by this construction is then and only then iscmorphic with the non-
graded poset obtained by the same construction starting with the points

o W o
(Ces Cipey +ovy Caps 0<t, <ty <ty <h—3
and
, 4 W o o
(Ciy €1y veny C3),) I T3 Gy <y <jp < h

when

(¢, i, - cim) = (¢4 Csy.ee Cpp))  and  (¢s, 0, ... cjt) = (] 65, ... €5}) .

Indeed if we denote the first ordering by 7' and the second by T;, and
if we assume that or (c,-1 c,-m) # (Cs) ..e i) OT () ... cit) # (¢} ... ¢;;), and that
there exists an isomorphism &: T_— T’<, then there are 2 possibilities:

a) D(p)=p.
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Then @ willinduce an automorphism of P_. But @(¢,)=¢; (i=0,1,2,..., k)
because ¢; is the only point % with f(k) = & which covers, or is covered by
the point p. So (¢, ... c,-m)z (s oer €4,) and (e;, ... cjt) = (¢j; ... ¢;;,) which is a
contradiction.

K
iyt

b) D(p)#p .

If A is an arbitrary poset, we shall denote by S(4) the set of all points z
such that there exist a chain of length k>3 in 4.: (a,, @y, ..., ;1) Where
@4y, covers ¢ and  covers a,. Of course if A _is a graded poset then S(4_) = 0.
In this case we have by construction S(T.) = S(T;,) = {p}.

Now it is evident that if @ is an isomorphism of 7' — Tls' that @.[8(T)]=

= S(T;;) so D(p) = p which is a contradiction.
h=3
Now we prove that there exist exactly @(h) = > 2%2#-*—1) possible dif-
a=0

ferent choices of (cq, .- cim) and (¢, ... c,.t) with 0<i, <ty ... <t,<h—3 and

I3 < <jp..<h.

Indeed for a given value 4, = a there are 2¢ possibilities for (e, ... c,-m): all
subsets of {¢,, ¢,, ..., .-} 2lso the empty subset; and (2*+—2— 1) possibilities
for (¢, 65,5 -.ey ¢); all non-empty subsets of {Citsy Cotay --ry Ca)

2.2, — Lemma 2. By adding k points (py, Psy ..., Pr) t0 @& graded poset
ey + h—1

with rank h, we can construct .
{7

) classes of isomorphic non-graded

posets with rank h (h>3).

Proof. By adding one point we can construct p(h) classes of isomorphie
non-graded posets with rank k. We shall denote these constructions by 7,
Ty .oy Tpyy- For each of the points (py, ps, ..., p,) We start with an arbitrary
of these constructions. If we denote the construction we use by adding the
point p, (r=1,2, ..., k) by Tir’ then we shall denote the total construction
by K= (T, T, ..., T:) (0 < i, < p(h)). It is not necessary that these con-
structions are all different, they may even be all the same (by using the same

. . ph) +k—1Y .
construction for each point p,). So there are exactly different

k
possible constructions K = (7,, T, ..., Tfr)' We prove now that 2 non-graded
posets T' . and T%, obtained by adding % points p, ... p, to a graded poset with
rank b using respectively the constructions K = (T ... T, ) and K'= (T ... Ty;)
are then and only then isomorphic when K = K !. Indeed assume that K = K’
then there exist at least one construction TireK such that Tirgé K.
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By construction we have S(T'.) = S(T;,) == {P; Py ... Pry. If there should
exist an isomorphism @: T — T/, then @ (S(T2)= S(Tw))= {P1 D2 ... Ps}-
But it @(p,) = p,, then we must have T = T,-f which is in contradiction with
the fact that T,.T¢K’.

2.3. — Theorem. There exist at least

n ] 1 — — 1
D(hyn) = 3 ((p( A+ m—m ) N, (h, m)
me=p41

n—m

ordering-structures with rank h on a finite set with cardinality n (h>3).

Proof. Consider the N,(h, m) graded posets with rank kh on a set with
cardinality m (b + 1 < m < n). By adding # — m points (p; ps ... Pu-m) We can
((p(h) —n—m—

construct [see Lemma 2] .
- m

rank k.

We prove now that no two of them are isomorphic. Consider two non-
isomorphic graded posets with rank % on m points P. and P'<,, and consider
the non-graded posets T'c and T, obtained by adding the points p; P2 ... Pr—m
respectively to P and P'g using arbitravy construections.

Now it is easy to see that there can’t exist an isomorphism @ of T — Tls"
Indeed, since by construction S(T'y) = S(T;,) = {P; Ps ... Pu—my and since
G.8(T<)= 8(T) ® must induce an isomorphism between P and PL,, which
is in contradiction with the fact that P is non-isomorphic with P;,. Now,
consider an arbitrary graded poset with rank % on m points: PL. By adding
oh) + 1 —m —

n—m

1
) N, (h, m) non-graded posets with

. 1 . .
n—m points we can construct ( ) classes of isomorphic non-

graded posets on n points. Consider next a graded poset with rank h on m
points P% non-isomorphic with PL. By adding »— m points we can construct
the same number of classes of isomorphic graded posets with rank » on n points,
and we have proved that these classes are all different from those of the first
construection. Because there exist exactly N,(k, m) classes of isomorphic graded
posets with rank kb on m points, we ecan construct N,(h, m): (q)(h) —:In —:nm - 1)
classes of isomorphic non-graded posets with rank h on n points.
Consider also the N, (h, m') classes of isomorphie graded posets with rank h

on m' % m points. By adding » —m’ points we can construct N,(h, m')-

oh) + n—m'—1
( n—m'
points which are all different from the classes obtained by starting with
a graded poset on m = m' points.

classes of isomorphic non-graded posets with rank % on m'
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Indeed if T and Tls' are two arbitrary non-graded posets with rank 5
obtained by adding respectively n —m and n — m/ points to a graded poset
with rank & on respectivily m and m’ points, and if there should exist an
isomorphism.

@: To—>To, then @D JS(TI)]=8Tw) but S(Tg) = 8T

which is in contradiction with the fact that m ¢ m’. However N, (h, m) = 0
for m < h and hence we can construct
n ] —m—1
Dk, n) = z (‘P( V) A+ B —m

) Ny(h, m)
n—m

m=p+1
classes of isomorphic posets with rank b on a finite set with cardinality n.

24. - Remark 1. D(h,#n)is also alower bound of the number of classes
of homeomorphic T -topologies with small inductive dimension % on a finite
set with cardinality .

If we define the chromatic number X(F) of a finite topological space F
by the minimal number of colours which is necessary to colour all points of
the space in such a way that two points have different colours when one of
them lies in all the open neighbourhouds of the other, then D(h, ») will also be
a lower bound of the number of classes of homeomorphic T,-topologies with
chromatic number b + 1 on » points.

25. -~ Remark 2. For h=0,1,2 D(h, n) = Nk, n) = N(h, n) since
there exist no non-graded posets with renk h < 3.

2.6. — Corollary. We obtained the following lower bound for the number
of ordering-structures on a finite set with cardinality n

B

1 on I —m—1
Noys S S (qﬂ( ) + n—m
h=0 wm=p+1

W —

) Ny (h, m).
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