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CHARLES A. COPPIN anda JOSEPH F. VANCE (¥)

On a Generalized Riemann-Stieltjes Integral. (**)

This paper deals with a special case of HENSTOCK’s generalized RIEMANN
integral [2]. In 1967, VANCE [4] showed how this concept could be used in
characterizing certain bounded linear functionals; and, in 1968, CorriN [1]
developed some additional results.

1. - Introduction.

Throughout this paper, [a,b] denotes a closed number interval and 4
denotes the set of all subsets of [a, b] whose closure is [@, ] and which con-
taing @ and b. If A is a number set with an upper bound, then a number a
is said to be a right end point of A if and only if a belongs to 4 and a=
=gsup 4. Left end point is defined similarly, and it should be obvious how
end point is defined. Two sets of numbers, 4 and B, are said to be nonover-
lapping if and only if AN B=@ or AN B is a singleton. A nonempty col-
lection is said to be nonoverlapping if and if each two distinet members of
the collection is nonoverlapping. All functions considered here are real-valued
of sets only have domain including [a, b], and are bounded on [a, b]. Also,
if M is a set and fis a function then

f]M:{(m, f(@))|#e M and @ is in the domain of f}.

(*) Indirizzo degli Autori: C. A. Corpin, Department of Mathematics, University
of Dallas, Irving, Texas, U.S.A.; J. F. VaxcE, Department of Mathematics, St. Mary’s
University, San Antonio, Texas, U.S.A. .

(**) Presented to the American Mathematical Society, January 23, 1969, under
the title of «. A Note on a Generalivzed Riemann-Stieltjes Integral». — Ricevu-
to: 1-IX-1972.
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Definition. If M is a member of 4, then D is said to be a partition of
M if and only if D is a finite collection of nonoverlapping subsets of M whose
union is M and each member of D has two end points. F(D) will denote the
set of end points of members of D.

Definition. If M is a member of A4 and D is a partition of M, then
D’ is said to be a refinement of D if and only if D’ is a partition of M and
E(D)c E(D').

Definition. If D is a nonempty collection of nonempty sets, then
is said to be a choice function on D if and only if J is a funcetion with domain

including D such that d(d) e d for each 4 in D.

Definition. If D is a subset of a partition of a member of 4, d is a choice
function on D, and f and g are functions with domains including U D, then

2(f, 9; D, 8) = zf(é([mi—ly mz])) [g(@;) —g(@:a)],

where @, 2,,...,2, are the end points of the members of D and z,< &<
< e By

Definition. Suppose that M is a member of A and 7 and g are func-

tions with domain including M. Then f is said to be g-integrable on M if
and only if there exists a number W (denoted by [fdg) such that for each
M

positive number g, there is a partition D of M such that
| W—2(f, 9, D', 5)[< &

for each refinement D’ of D and each choice function 6 on D’'.

2, - Result.

The following theorem, the proof of which is analogous to a proof of
Theorem 10.2, page 49, in [3], will prove to be useful.

Theorem 1. Suppose that f and g are functions with domain [a, b], and
M is a member of A. Then the following two statements are equivalent:

(a) f is g-integrable on M.
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(b) If >0, there ewists a partition D of M such that |2X(f, g, D, 0)—
— 2(f, g, D', 0")|< & for each choice function & on D, each refinement D' of D,
and each choice function 8’ on D',

Theorem 2. Suppose that f and g are functions with domain [a, b], and
M is a member of A. Then the following two statements are equivalent:

(a) f is g-integrable on M, and f|M and g|M have no common points of
discontinaity.

(b) If M’ is a countable member of A and a subset of M, then f is g-integ-
rable on M.

Proof. Suppose that f and ¢ are functions with domain [a, b], and M is
a member of 4.

We will first prove that (b) implies (a). Assume that f is not g-integrable
on M or f| M and g|M have a common point of discontinuity.

First, assume that f is not g-integrable on M. By Theorem 1, there is a
positive number ¢ such that for each partition D of M, there is a refinement
D’ of D, a choice function ¢, on D, and a choice function J,, on D’ such that

| Z(f, g, D, ap)_—z(f’ g, D’; 61)')!>8 .

Using the preceding information, it can be shown that there is a sequence
Dy, D,, ... of partitions of M and a sequence of refinements D;,D;,D;,
of D,, Dy, D,,..., respectively, satisfying the following conditions:

1) (BD,)V ED,) V6, (D) 51,;(1),’,)) CBWD,.), n=1,23...

9) UEWD)EA.

fe=1]

3) |2(f, 9, Ds, 6 ﬂ)——-Z(f, gy D:n 61);)[ >e n=123..:

D,

@

U H(D,) is a countable member of A and a subset of M, so f is g-integrable

i=1

(=]

on U E(D,). Thereis a partition Fof U E(D,) such that | [fdg— >(f, g, F', d)|<
= =t 8 E(Di)
i=1
< &/2 for each refinement F' of F and for each choice function 6 on F'.
Since I is finite and each member of F is a member of H(D,) for some =,
there is a positive integer N such that E(F)c H(D,) for each p>N. Since
B(F)c B(D,), let F, be a refinement of I such that E(F,)= E(D,), and
let I, be a refinement of F such that E(F,)= E(D,). If dely, let &
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denote a member of D, such that d and d' have the same end points. Let 5sz
be a function with domain F, given by 6FN(d) = 5DN(d’) for each d in I,.

Now, let d be an arbitrary member of F. 6DN(d’) ed and 5DN(d’) eV H(D,).
f==1

Thus, 4, (d)= 6, (d') e d. 0, 1 a choice function on F,. Define (5F\: in
like manner so that 6%" will be a choice function on F,. It should now be
reasonably clear that 2f, g, I, 5FN) = 2(f, g, Dy, 6DN) and 2(f, g, Ty, (5F‘<’) =
= 2(, g, Dy, 8,7). We have

I f ]‘dg—Z'(f,g, Dzva ‘SDN)]<6/2

U ey
i=1

and
| .f fag— 2(f, g, "DJ:’76DA;)]<8/2'

<«
U EWyp
i=1

The preceding yields
|2(f, 9, Dy» 8,) — Z(f, g, Dyy 8,1)| < &

which contradiets condition 3) above.

Therefore f is g-integrable on M.

Now, assume that f|M and g|M have a common point of discontinuity
which we will call 2. This allows one to determine a countable member
M'e A and k> 0 such that for each open interval s containing 2, [f(z)—
— i) -19(9) —g(p)| > % for some p and some ¢ belonging to 8§ N M’ and
for some @ and some y between p and ¢ where x and y belong to M’. A simple
application of the definition of integral shows that this is enough to make f
not g-integrable on ', which is a contradiction.

Thus (b) implies (a).
Now, suppose M’ is a countable subset of M and M'e 4.
Let ¢ > 0. There is a partition D of M such that

(1) Ij}f fdg—Z(f,gaD', 6) [<8/2

for each refinement D’ of D and each choice function § on D’.
It will be sufficient to consider the case H(D)¢ M’'. Then E(DNM =
= {21, 2, ..., 2,} is a nonempty subset of M\JM'. Using the fact that at



[5] ON A GENERALIZED RIEMANN-STIELTJES INTEGRAL 77

each element of B(D)\ M’ either | M or g|M is continuous and the fact that
f and g are bounded on M, it can be shown that there is d > 0 such that,
if ze B(D)\JL', then

(2) [F(uw) —f(0) [ - 1g(s) — g(r) | < ¢/2N

for each #, s, %, and v in (#¢—d, 2 + d) N M such that r< z< s and r<u<
< LS.

Let D, denote a refinement of D such that (EDN\E(D))c M', |D.] <
< d/2 (| D] = sup{z|there is a w in D, and p, g€ w such that p < ¢ and
= — p}) and between such two points of H(DNN\M’ there is a point of
E(D,). Also, let F be a partition of M’ each that B(F)= (E(D)\M) U{a, b}.

Suppose that F’ is a refinement of I and § is a choice function on .
A few preliminaries are in order:

D, denotes a refinement of D, such that E(D;) = B(F")yU E(D,).
@, is a subset of D, such that

G, = {[_p17 2] O M, [Pe; 2] O M, ooy [Pyy 2] N ﬂ[}-
@, is a subset of D such that

G ={l2, 10 M, [z, 1 N M, ..., [2y, @] O M}

8’ is a choice function on D, such that if d'e D\(G,U @,), then 6'(d')=
= §(d) where d is a member of ' with the same end points as d', and if
d'e G,U G, then 8'(d’) is the end point of d’' which is in B(D)N\M".

From (1), we have
(3) lﬂf fdg - z (f; g D;\(Glu G2)1 6,) - z (f7 9, G17 6,) -

- E(f, g, Gy )| <g[2,

which yields

(4) ]Jif fdg - z (f, gs F’\G’, 5) o Z (f’ g, Gl, 5,) _
- Z (f? g, Gz; (SI)I <8/2 ,

where G’ is the set of all members of 7 which have a point of H(DNM'
between their end points.
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By (2)
[ 12, 9, 61, 0) + 2(f, g, G, 0)— 3(F, g, &, 0)|=

= lgl /=) (9(z0) — 9(p2) + f(22) (9(q:) — q(z))] —

(8) 9 ¥
— 2 (0pes 1N M) (g(g:) — 9(p) | <
<2 e = 1(8(pey g1 0 D) | 19(g) — 9(p) | < &/2 .

Combining (4) and (5), we have
Iﬁf fdg— > (1, 9, F', 0)| <e.

So f is g-integrable on M’, and (a) implies (b).
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