CHARLES A. COPPIN and JOSEPH F. VANCE (\*)

## On a Generalized Riemann-Stieltjes Integral. (\*\*)

This paper deals with a special case of Henstock's generalized RIEMANN integral [2]. In 1967, Vance [4] showed how this concept could be used in characterizing certain bounded linear functionals; and, in 1968, Coppin [1] developed some additional results.

## 1. - Introduction.

Throughout this paper, [a, b] denotes a closed number interval and  $\Delta$  denotes the set of all subsets of [a, b] whose closure is [a, b] and which contains a and b. If A is a number set with an upper bound, then a number a is said to be a right end point of A if and only if a belongs to A and  $a = \sup A$ . Left end point is defined similarly, and it should be obvious how end point is defined. Two sets of numbers, A and B, are said to be nonoverlapping if and only if  $A \cap B = \emptyset$  or  $A \cap B$  is a singleton. A nonempty collection is said to be nonoverlapping if and if each two distinct members of the collection is nonoverlapping. All functions considered here are real-valued of sets only have domain including [a, b], and are bounded on [a, b]. Also, if M is a set and f is a function then

 $f \mid M = \{(x, f(x)) \mid x \in M \text{ and } x \text{ is in the domain of } f\}.$ 

<sup>(\*)</sup> Indirizzo degli Autori: C. A. COPPIN, Department of Mathematics, University of Dallas, Irving, Texas, U.S.A.; J. F. VANCE, Department of Mathematics, St. Mary's University, San Antonio, Texas, U.S.A..

<sup>(\*\*)</sup> Presented to the American Mathematical Society, January 23, 1969, under the title of «A Note on a Generalized Riemann-Stieltjes Integral». — Ricevuto: 1-IX-1972.

Definition. If M is a member of  $\Delta$ , then D is said to be a partition of M if and only if D is a finite collection of nonoverlapping subsets of M whose union is M and each member of D has two end points. E(D) will denote the set of end points of members of D.

Definition. If M is a member of  $\Delta$  and D is a partition of M, then D' is said to be a refinement of D if and only if D' is a partition of M and  $E(D) \subset E(D')$ .

Definition. If D is a nonempty collection of nonempty sets, then  $\delta$  is said to be a choice function on D if and only if  $\delta$  is a function with domain including D such that  $\delta(d) \in d$  for each d in D.

Definition. If D is a subset of a partition of a member of  $\Delta$ ,  $\delta$  is a choice function on D, and f and g are functions with domains including  $\cup D$ , then

$$\Sigma(f, g, D, \delta) = \sum_{i=1}^{n} f(\delta([x_{i-1}, x_{i}])) \cdot [g(x_{i}) - g(x_{i-1})],$$

where  $x_0, x_1, ..., x_n$  are the end points of the members of D and  $x_0 < x_1 < < ... < x_n$ .

Definition. Suppose that M is a member of  $\Delta$  and f and g are functions with domain including M. Then f is said to be g-integrable on M if and only if there exists a number W (denoted by  $\int f \, dg$ ) such that for each positive number  $\varepsilon$ , there is a partition D of M such that

$$|W - \Sigma(f, g, D', \delta)| < \varepsilon$$

for each refinement D' of D and each choice function  $\delta$  on D'.

## 2. - Result.

The following theorem, the proof of which is analogous to a proof of Theorem 10.2, page 49, in [3], will prove to be useful.

Theorem 1. Suppose that f and g are functions with domain [a, b], and M is a member of  $\Delta$ . Then the following two statements are equivalent:

(a) f is g-integrable on M.

(b) If  $\varepsilon > 0$ , there exists a partition D of M such that  $|\Sigma(f, g, D, \delta) - \Sigma(f, g, D', \delta')| < \varepsilon$  for each choice function  $\delta$  on D, each refinement D' of D, and each choice function  $\delta'$  on D'.

Theorem 2. Suppose that f and g are functions with domain [a, b], and M is a member of  $\Delta$ . Then the following two statements are equivalent:

- (a) f is g-integrable on M, and  $f \mid M$  and  $g \mid M$  have no common points of discontinuity.
- (b) If M' is a countable member of  $\Delta$  and a subset of M, then f is g-integrable on M'.

Proof. Suppose that f and g are functions with domain [a, b], and M is a member of  $\Delta$ .

We will first prove that (b) implies (a). Assume that f is not g-integrable on M or  $f \mid M$  and  $g \mid M$  have a common point of discontinuity.

First, assume that f is not g-integrable on M. By Theorem 1, there is a positive number  $\varepsilon$  such that for each partition D of M, there is a refinement D' of D, a choice function  $\delta_p$  on D, and a choice function  $\delta_{p'}$  on D' such that

$$|\Sigma(f, g, D, \delta_n) - \Sigma(f, g, D', \delta_{n'})| \ge \varepsilon$$
.

Using the preceding information, it can be shown that there is a sequence  $D_1, D_2, \ldots$  of partitions of M and a sequence of refinements  $D_1', D_2', D_3', \ldots$  of  $D_1, D_2, D_3, \ldots$ , respectively, satisfying the following conditions:

- 1)  $(E(D_n) \cup E(D_n') \cup \delta_{D_n}(D_n) \cup \delta_{D_n'}(D_n')) \subset E(D_{n+1}), \quad n = 1, 2, 3, \dots$
- $2) \quad \mathop{\cup}_{i=1}^{\infty} E(D_i) \in \varDelta.$
- 3)  $|\Sigma(f, g, D_n, \delta_{D_n}) \Sigma(f, g, D'_n, \delta_{D'_n})| \ge \varepsilon, n = 1, 2, 3, \dots$

 $\bigcup_{i=1}^{\infty} E(D_i)$  is a countable member of  $\Delta$  and a subset of M, so f is g-integrable

on 
$$\bigcup_{i=1}^{\infty} E(D_i)$$
. There is a partition  $F$  of  $\bigcup_{i=1}^{\infty} E(D_i)$  such that  $|\int f \mathrm{d}g - \sum (f,g,F',\delta)| < \bigcup_{i=1}^{\infty} E(D_i)$ 

 $< \varepsilon/2$  for each refinement F' of F and for each choice function  $\delta$  on F'.

Since F is finite and each member of F is a member of  $E(D_n)$  for some n, there is a positive integer N such that  $E(F) \subset E(D_p)$  for each  $p \geqslant N$ . Since  $E(F) \subset E(D_N)$ , let  $F_N$  be a refinement of F such that  $E(F_N) = E(D_N)$ , and let  $F_N'$  be a refinement of F such that  $E(F_N) = E(D_N)$ . If  $d \in F_N$ , let d'

denote a member of  $D_{\scriptscriptstyle N}$  such that d and d' have the same end points. Let  $\delta_{\scriptscriptstyle F_N}$  be a function with domain  $F_{\scriptscriptstyle N}$  given by  $\delta_{\scriptscriptstyle F_N}(d)=\delta_{\scriptscriptstyle D_N}(d')$  for each d in  $F_{\scriptscriptstyle N}$ .

Now, let d be an arbitrary member of  $F_N$ .  $\delta_{D_N}(d') \in d'$  and  $\delta_{D_N}(d') \in \bigcup_{i=1}^{\infty} E(D_i)$ .

Thus,  $\delta_{F_N}(d) = \delta_{D_N}(d') \in d$ .  $\delta_{F_N}$  is a choice function on  $F_N$ . Define  $\delta_{F_N'}$  in like manner so that  $\delta_{F_N'}$  will be a choice function on  $F_N$ . It should now be reasonably clear that  $\Sigma(f, g, F_N, \delta_{F_N}) = \Sigma(f, g, D_N, \delta_{D_N})$  and  $\Sigma(f, g, F_N', \delta_{F_N'}) = \Sigma(f, g, D_N', \delta_{D_N'}, \delta_{D_N'})$ . We have

$$|\int\limits_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c}$$

and

$$\big| \int\limits_{\stackrel{\circ}{i=1}}^{\infty} f \, \mathrm{d}g - \mathcal{\Sigma}(f,\,g,\,D_{_{N}}^{'},\,\delta_{_{D_{_{N}}^{'}}}) \, \big| < \, \varepsilon/2 \,\,.$$

The preceding yields

$$|\varSigma(f,\,g,\,D_{\scriptscriptstyle N},\,\delta_{\scriptscriptstyle D_{\scriptscriptstyle N}})-\varSigma(f,\,g,\,D_{\scriptscriptstyle N}^{\,\prime},\,\delta_{\scriptscriptstyle D_{\scriptscriptstyle N}^{\,\prime}})|<\varepsilon$$

which contradicts condition 3) above.

Therefore f is g-integrable on M.

Now, assume that f|M and g|M have a common point of discontinuity which we will call z. This allows one to determine a countable member  $M' \in \Delta$  and k > 0 such that for each open interval s containing z,  $|f(x) - f(y)| \cdot |g(q) - g(p)| > k$  for some p and some q belonging to  $S \cap M'$  and for some x and some y between p and q where x and y belong to M'. A simple application of the definition of integral shows that this is enough to make f not g-integrable on M', which is a contradiction.

Thus (b) implies (a).

Now, suppose M' is a countable subset of M and  $M' \in \Delta$ .

Let  $\varepsilon > 0$ . There is a partition D of M such that

(1) 
$$|\int_{\mathcal{X}} f dg - \sum_{i} (f, g, D', \delta)| < \varepsilon/2$$

for each refinement D' of D and each choice function  $\delta$  on D'.

It will be sufficient to consider the case  $E(D) \not\in M'$ . Then  $E(D) \setminus M' = \{z_1, z_2, ..., z_y\}$  is a nonempty subset of  $M \setminus M'$ . Using the fact that at

each element of  $E(D) \setminus M'$  either  $f \mid M$  or  $g \mid M$  is continuous and the fact that f and g are bounded on M, it can be shown that there is d > 0 such that, if  $z \in E(D) \setminus M'$ , then

$$(2) |f(u) - f(v)| \cdot |g(s) - g(r)| < \varepsilon/2N$$

for each r, s, u, and v in  $(z-d,z+d) \cap M$  such that r < z < s and  $r \le u < < v \le s$ .

Let  $D_1$  denote a refinement of D such that  $(E(D_1) \setminus E(D)) \subset M'$ ,  $||D_1|| < d/2$  ( $||D_1|| = \sup\{x | \text{there is a } w \text{ in } D_1 \text{ and } p, q \in w \text{ such that } p < q \text{ and } x = q - p\}$ ) and between such two points of  $E(D) \setminus M'$  there is a point of  $E(D_1)$ . Also, let F be a partition of M' each that  $E(F) = (E(D_1) \setminus M) \cup \{a, b\}$ .

Suppose that F' is a refinement of F and  $\delta$  is a choice function on F'. A few preliminaries are in order:

 $D_1'$  denotes a refinement of  $D_1$  such that  $E(D_1') = E(F') \cup E(D_1)$ .  $G_1$  is a subset of  $D_1'$  such that

$$G_1 = \{[p_1, z_1] \cap M, [p_2, z_2] \cap M, ..., [p_N, z_N] \cap M\}.$$

 $G_2$  is a subset of  $D_1'$  such that

$$G_2 = \big\{ [z_1,\,q_1] \cap M,\, [z_2,\,q_2] \cap M,\, ...,\, [z_N,\,q_N] \cap M \big\}.$$

 $\delta'$  is a choice function on  $D_1'$  such that if  $d' \in D_1' \setminus (G_1 \cup G_2)$ , then  $\delta'(d') = \delta(d)$  where d is a member of F' with the same end points as d', and if  $d' \in G_1 \cup G_2$ , then  $\delta'(d')$  is the end point of d' which is in  $E(D) \setminus M'$ .

From (1), we have

(3) 
$$\left| \int_{M} f \, \mathrm{d}g - \sum \left( f, \, g, \, D_{1}^{\prime} \backslash (G_{1} \cup G_{2}), \, \delta^{\prime} \right) - \sum \left( f, \, g, \, G_{1}, \, \delta^{\prime} \right) - \sum \left( f, \, g, \, G_{2}, \, \delta^{\prime} \right) \right| < \varepsilon/2,$$

which yields

(4) 
$$| \int_{M} f \, \mathrm{d}g - \sum_{M} (f, g, F' \setminus G', \delta) - \sum_{M} (f, g, G_{1}, \delta') - \sum_{M} (f, g, G_{2}, \delta') | < \varepsilon/2,$$

where G' is the set of all members of F' which have a point of  $E(D) \setminus M'$  between their end points.

By (2)

$$\begin{cases} |\varSigma(f,\,g,\,G_{1},\,\delta') + \varSigma(f,\,g,\,G_{2},\,\delta') - \varSigma(f,\,g,\,G',\,\delta)| = \\ = |\sum_{i=1}^{N} \big[ f(z_{i}) \cdot \big( g(z_{i}) - g(p_{i}) \big) + f(z_{i}) \cdot \big( g(q_{i}) - q(z_{i}) \big) \big] - \\ - \sum_{i=1}^{N} f\big( \delta([p_{i},\,q_{i}] \cap M') \big) \cdot \big( g(q_{i}) - g(p_{i}) \big) | \leqslant \\ \leqslant \sum_{i=1}^{N} |f(z_{i}) - f\big( \delta([p_{i},\,q_{i}] \cap M') \big) | \cdot |g(q_{i}) - g(p_{i})| \leqslant \varepsilon/2 \ . \end{cases}$$

Combining (4) and (5), we have

$$|\int_{\mathbb{R}} f dg - \sum_{i} (f, g, F', \delta)| < \varepsilon.$$

So f is g-integrable on M', and (a) implies (b).

## References.

- [1] C. A. COPPIN, Concerning an integral and number sets dense in an interval, Ph. D. thesis, Univ. of Texas Library, Austin, Texas, 1968.
- [2] R. Henstock, Linear Analysis, Plenum Publishing Corp., New York, 1962.
- [3] T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York, 1963.
- [4] J. F. Vance, A representation theorem for bounded linear functionals, Ph. D. thesis, Univ. of Texas Library, Austin, Texas, 1967.

\* \* \*