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W. MIEBELANTS (%)

The Enumeration of Classes

of Homotopic Equivalent Topologies. (**)

1. - Introduction.

1.1. — Consider a finite topological space F = (X,, ) where n denotes
the cardinality of the set X,. If M C.X,, the open hull @(HM) is the intersec-
tion of all open subsets of F' containing M. Of course ¢ satisfies the axioms
of the KURATOWSKI closure operator. We write @(«) for the open hull Q({z})
of a point z € X,. Obviously the system {Q, Qx)/|x e X,,} is a basis of F' which
refines every basis. Now we define a relation < on X, by saying o<y-<
<> w€Q(y) (equivalently @(z) CQ(y)). Clearly < is reflexive and transitive.
It is easy to see that the map f: F,—>F, is continuous if and only if f is
isotonic.

A finite topological space is T, if and only if < is a partial order, and
totally disconnected if and only if < is an equivalence relation (in this case
the closure operator @ satisfies the MACLANE-STEINITZ exchange property).

The proces is reversible. Let (X,, <) be a finite set with a quasi-ordering.
For each we X, let Q(z)= {y € X,/}y<=}. Then the system {0, Q(x)//z € X,}is
a basis of a topology on X,. Hence it is easy to prove that there exist a bijec-
tive covariant functor from the category of the finite quasi-orderings (respec-
tively: partial orderings, equivalence relations) with the isotonic functions as
morphisms, to the category of finite topological spaces (respectively: T-spaces,
totally disconnected spaces) with the continmnous funections as morphisms.

(*) Indirizzo: Riinglaan 102, 2610 Wibrijk, Belgio.
(**) Ricevuto: 9-XTI-1971.
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L.2. — It is easy to see that every finite topological space is homotopic
equivalent with a finite T-topological space. Indeed the identification-topol-
ogy defined by the equivalence-relation: two points are equivalent if and
only if they have all the same open neighbouthoods is a 7,-topological space,
which is a strong deformation-retract of this topological space [22].

Hence the number of classes of homotopic equivalent 7T,-topologies on a
finite set will be the same as for arbitrary topologies. We denote this number
by M(n).

2.1. - Definition. A point @ of an arbitrary finite T,-topological space
is called linear if there exist in the associated ordering P_ a point y < # such
that Vee Po: z<2 = 2<y.

2.2, ~ Definition. A point # of an arbitrary finite T,-topological space
is called colinear if there exist in the associated ordering P_ a point y > @ such
that Vee P z2>a = 2>y.

2.3. — Definition. The core: C(F) of an arbitrary finite topological
space F is a subspace C(F) of F which is a strong deformation-retract of F,
which is a T,-space, and which has no linear and colinear points.

It has been proved by R. E. Stona [22] that every finite space has a core;
that all cores of a finite space are homeomorphic equivalent and that two finite
spaces F'y and I, are homotopic equivalent if and only if the core of F, is
homeomorphic equivalent with the core of F, or F,~ ¥, < OF,) == O(F,).

24. - Remark. If F is contractible then C(F) will be the trivial topol-
0gy on one point.

2.5. — Theorem. If we denote the number of classes of homeomorphic
equivalent Ty-topologies without linear and colinear poimis on a finite set with
cardinality n by C(n) then we will have

”
M(n) =Y C(m).
m==l

Indeed: with each class of homotopic equivalent topologies on » points there
corresponds exactly one class of homeomorphic equivalent 7,-topologies without
linear and colinear points (the common core of these spaces) on m<n points.
Conversely with each class of homeomorphic 7T,-spaces without linear and
colinear points on m points corresponds exactly one class of homotopic equiv-
alent topologies on n=m points of which it is the common core.
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2.6. — So the problem of the emumeration of classes of homotopic equival-
ent topologies on a finite set is reduced to the enumeration of classes of home-
omorphic equivalent 7,-topologies without linear and colinear points, or equiv-
alently to the enumeration of ordering-structures without linear and colinear
points.

The problem of the enumeration of ordering-structures without linear and
colinear points is of course very difficult since it is an enumeration problem
concerning classes of isomorphic structures which are locally restricted (indeed
no point of the ordering may cover exactly one point and no point may be
covered by exactly one point). Even in the most simple case of rank 1 (where
the great difficulty of the transitivity-property falls off) the problem is reduced
to the enumeration of classes of isomorphic bichromatic graphs (directed, and
without loops and multiple edges) where the valency of every vertice is differ-
ent from 1. The vertices of the first colour are poinbts which covers other
points, vertices of the second colour are points which are covered by other
points, and isolated vertices have an arbitrary colour. Because no point of
the ordering covers exactly one point or is covered by exactly one point the
valency of every vertice in the corresponding graph had to be different from 1.
Using the most powerful methods of combinatorial theory R. C. READ has
solved this problem for the total number [15] and remarked that the enumer-
ation of classes of isomorphic different such graphs is of an higher order of
difficulty.

3. — The enumeration of classes of homotopic equivalent topologies on X,
with n<T and the caleulation of the singular homology growps of each class.

3.1. — With each T,-space without linear and colinear points on a set with
less than eight points, I shall associate a polyheder whose homotopy groups,
singular homology and cohomology groups ave isomorphic with those of each
topological space whose core is homeomorphic with this space.

I shall use the following results of M. C. McCorp [4]

With each finite T,-topological space ¥ we can associate the abstract sim-
plicial complex &(F) whose simplexes are the well-orderings in the associated
ordering of F. @ is a covariant functor from the category of finite T-topologies
with the continuous funections as morphisms to the category of the simplicial
complexes with the simplicial transformations as morphisms. We denote by
|®(F)| the polyheder of a geometrical realisation of @(I) in R (m sufficiently
great). With each point p of |D(F)| with carier (uy, s, ..., %) With wu, <u, <
< ...< u, (each simplex is a well ordering we define f(p) = u,. M. C. CorD [4]
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has proved that f: |@(F)|— F is a weak homotopy-equivalence or a contin-
uous funetion which induces maps

f:i:: nz(lq)(F)!7w) e ﬂi(F, f(m))

which are isomorphisms for all € X, and all ¢ > 0 [for = 0 «isomorphism »
is understood to mean simply «1-1-correspondence »]. It is a well known theor-
em of J. H. C. WHITEnEAD that every weak homotopy equivalence induces
isomorphisms on singular homotopy-groups (hence also on singular cohomo-
logyrings).

So with each core F' on less than eigth points, we can construct |D(F)]
and calculate the homology-groups of these polyhedra.

3.2. — For n<7 we have:

[ 1 2 3 4 5 6 7
C(n) 1 1 1 2 4 11 32
M(n) 1 2 3 5 9 20 52

We use the additive group of the integers Z as coefficient-group and we denote
the free Abelian group on m generators by

Ap=2+ Z + ... + Z (m terms) .

The 52 classes of homotopic equivalent topological spaces with cardinality less
than 8 consist of

1) 32 classes of connected topologies [H,= Z]

—- The class of contractible topologies

— 2 classes with H, =2 H,=0 P> 2

— 5 clagses with H,=4, H,= > 2

— 9 classes with H, =4, H,= P> 2

— 7 classes with H, =4, H,=0 1> 2

— 2 classes with H,=A4; H,=0 P> 2

— 2 classes with H,=4; H,=0 P> 2

— 1 class with H,=0 H,=2Z H,=0 4¢>3
— 3 classes with H,=0 H,=4, H,=0 1>3
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2) 11 dlasses of topologies with 2 components [H, = A,]

-~ 1 class with H, =0 P> 1

— 2 classes with H,=12 H, =0 > 2

— b classes with H,=4, H,=0 P> 2

— 1 class with H =4, H,=0 P> 2

— 1 class with =4, H,=0 P> 2

— 1 class with H =0 H, =7 H, =0 >3

3) 4 classes of topologies with 3 components [H, = A,;]

— 1 eclass with H,=0 1>1
— 1 class with H,=Z H, =0 P> 2
— 2 classes with H,=— 4, H,=0 7> 2.

4) & classes of topologies with 4 componenis [Hy,= A,]

-— 1 class with H, =0 1> 1
— 1 class with H, =7 H,=0 > 2.

5) 1 class with respectively 5, 6 and 7 components all homotopic equiv-
alent with the discrete topology on respectively 5, 6 and 7 points.

4. - Existence-problems,

4.1. — Using the results of the work of McCoRD it is easy to prove that
for every finitely generated group there exist a finite connected topological
space having this group as fundamental group of PoiNcAr%., So we can ask
the following existence-problem: given an arbitrary finitely generated group,
what are the necessary and sufficient conditions to which the cardinality of
a set had to satisfy such that a connected topology can be defined on it
having this group as fundamental group.

4.2. — For ;= Z it is » > 4. The topological space with minimal cardin-
ality beeing connected and having this group as fundamental group is the
following topology on 4 points {s;, s, 83, s} With basis: {0; {s,}; {s:}; {81, a2, 53};
{817 S2, 34}}'

It is the connected topological space with minimal cardinality beeing non-
contractible, and there exist a week homotopy equivalence from the circle
to this space.
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4.3. — For 7, = P, (the free group with 2 generators) it is w>5. The
topological spaces with minimal cardinality beeing connected and having this
group as fundamental group are the following two (homeomorphic different)
topologies on 5 points {s, 8., 83, 81, 85} With basis respectively: {0; {s;}; {s.};
{81582, 8315 {81, 80,805 {suysen st} and {05 {si}; {sa}; {sa)s {su, 2, 8y 845
{81, 52, 83, S5})-

4.4. — More generally for m,=F, it is n >k where k= min (n.; %n,)
where #n, is the least even number such that }(n, — 2)°>m and n, the least
odd number such that f(n,— 2)°+ 1> m. If k= n,, the connected topolog-
ical space with minimal cardinality having this group as fundamental group
is the following topology on =, = 247,1 points s; (it =1, 2,...,n,) with basis
{Q5 {81}5 ] {8721 ; {31, Say eeey Sniy Sni—i-l}; {817 Say eee Suyy 8111}}'

If &k = n, it are the following 2 (homeomorphic different) topologies on
ny==2n, + 1 points s; ({=1,2,..,n,) with basis respectively {9; {s:1};
{82}y o3 {Sné}; {815 82y wevy Snis sn;ﬂ}; v {81y 82y ey Suys 8712}} and {@; {81} {8235 .-, {snéh
{sﬂé'l"l}; {Sly Sy v Spgty 3né+2} {817 S2y e 37,:;+17 s"z}}'

4.5. — For m= Z,: n > 311is a sufficient condition. Indeed on a set with 31
points we can construct a connected topology whose fundamental group is Z,
and whose points can be considered as the vertices of the first barycentric
division of the minimal dissection of the real projective plane; and where the
minimal open set @{«) of a point x is defined to be the set of vertices of the
simplex in this dissection whose barycenter is the point x. (By a theorem of
McCorD [4] we can then prove that there exist a weak homotopy equivalence
from the real projective plane to this space and so mw, = Z,).

4.6. — More generally for sy==Z,: n > f(p) is a sufficient condition where
f(p) denotes the number of vertices of the first barycentric division of the
minimal dissection of the LENzZ-space L(p, 1).
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Summary.

The enumeration problem concerning the number of classes of homotopic equivalent
topologies on a finite set is reduced to the enumeration of certain locally restricted ordering-
structures.






