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S. P. SINGH (¥)

Fixed Point Theorems in Metric Spaces. (**)

A mapping T of a metric space X into itself is said to satisfy LipscHITZ
condition with LrpscHITZ constant &k if

a(Tx, Ty) <k dz, y) for all #, ¥y in X.

In case 0<k<1, then T is called a contraction mapping. A well-known
theorem of BANACH states that if X is a complete metric space and T'is a con-
traction mapping of X into itself, then T has a unique fixed point.

The assumption d(Tx, Ty) < d(z, %) is not sufficient for the existence of a
fixed point in a complete metric space. For example, let X = {w|v>1} with the
usual distance

@ y) = le—y|,

and let T: X — X be defined by
Te =x - (1/z) .

Then d(Tz, Ty) < d(®,y), 9y, but T has no fixed point [1]. However, if
the space is compact then there is always a fixed point for such a mapping [4].
In this paper we have proved a general result of BANACH contraction prin-
ciple. The results given earlier by CHU and D1Az [2], EDELSTEIN [3], RAXoTH [7]
and K. L. Sinem [8] will be easy corollaries to our work. In the end, some
results related to sequence of mappings and fixed points have been given.

(*) Indirizzo: Memorial University of Newfoundland, St. John’s, Newfoundland,
Canada.
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Definition 1. We denote by F the family of fuctions Az, y) satisfy-
ing the following conditions:
(1) A@, y) = A(d», ), i.e. A is dependent on the distance between =
and 4.
(2) 0<A(d) <1, for every d>0.
(3) A(d) is monotonically decreasing function of d.

Definition 2. A finite sequence 2y, #,, @, ..., #, of points of X is called
an g-chain joining w, and @, if d(#,—,, #;) <eforeache>0 (1=1,2, ..., 7).

Detfinition 3. A metric space X is said to be e-chainable (well-linked)
if for each pair (@, y) of its points there exists an e-chain joining @ and y.

Every connected metric space is well-linked, but the converse is not always
true. However, for compact spaces both are equivalent [6].

Theorem 1. If T is a mapping of a complete s-chainable metric space X
into itself satisfying d(z, y) < e implies that A(Tmz, Try) < Mw, y) d(z, y) for
every @, y in X, for positive integer m and A(», y) € F, then T has a unique fized
point.

Proof. Since (X, d)is e-chainable, we define for every #, y in X:
A (@, y) = inf Y d(,_,, @) ,
=1

where the infimum is taken over all e-chains #,, #, ..., #, joining & = x, and
Y =,: Then d, is a distance function satisfying

1) (@, y)<d (2, y) ,
(ii) (@, y) = d (v, ) for d(w,y) <e.

From (ii) it follows that a sequence {,} in X is a CAUCHY sequence with
respect to d, if and only if it is a CAUCHY sequence with respect to ¢ and it is
convergent with respect to d, if and only if it is convergent with respect to d.
Hence, (X, &) is a complete metric space, becouse (X, d) is a complete metric
space [1]. Since T satisfies the condition

d(Tmw, Ty < Az, y) (@, ¥) for all #, y in X,
and therefore by a corollary given by RAK0TCH [7] we get T has a unique

fixed point.
It follows easily that T' has a unique fixed point.
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Remarks:
(1) In case m==1, and X is e-chainable complete metric space, then
we get a known result due to Sty [8].
(2) In case m =1, X is a complete metric space and

A(Tw, Ty) < Mw, ) dw, ) ,

we get a well-known result due to Raxorcm [7].

(3) In case A(w,y)=1Fk, where 0<k<1 and m=1, then we get a
result due to EDELSTEIN [3]

(4) In case A, )=k, where 0<k<1, and X is a complete metric
space and T=: X — X, such that

a(Tma, Tryy < b d(w, ),

then we get a well-known result due to CrU and Di1az [2].
We prove the following theorem on sequence of commuting family of map-
pings and common fixed points.

Theorem 2. Let (X,d) be a complete metric space and let T; (i=1,2, ...)
be a sequence of mappings of X into dtself satisfying the following conditions:

(1) There exist ¢ and k (¢>0, 0<k<<1) such that

Tz, T, y)< b A=, vy) (t=1,2,..)

whenever d(z, y)<ec,

(ii) : T,T:szT.L (i,jzl,?l, ...).

Then the family T, (i=1,2,..) has a common fiwed point.
In the proof of this Theorem we need a definition and a theorem due to
EpeLsTRIN [5].

Definition 4. A metric space (X, d) is called weakly s-chainable if
together with @, b in X, there exists a sequence C(a, d) = (a = @4, ..., T =)
in X such that

@y, v;)<e (t=1,2,..., k).

Theorem (EDELSTEIN [5]). If T: X — X is a mapping of a complete,
weakly e-chainable metric space (X, d) satisfying the condition d(a, b) <e im-
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plies that d(Ta, Tb)< Kd(a,b) for a, b in X and 0<K<1, then there
exists a unique z in X such that T = z.

Proof of Theorem 2. Let Y denote the set of all ¥ in X with the
property that a sequence C(y, #,) in X exists where

0(?]7 mn) = {’J/ == gy Qyy evey Ay == mn}

with d(a;—, ¢;)<e (i=1,2,..,m). Then Y is a closed metric subspace of X
and T(Y)c Y. Using the above result due to EDELSTEIN [5], we get that
for each i, a unique p; in ¥ exists such that T;p,= p:- We need to prove
that p, is a common fixed point for the family {T.;}.

Since T.7,=T,T, for i, j=1,2, ..., and p, is a unique fixed point for T,
it follows that p, is a common fixed point for the family {7} by the commuting
property.

Thus the proof.
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